西葫芦CpWRKY2基因的分离、鉴定及其对非生物胁迫分析
作者:
基金项目:

福建省属公益类科研院所基本科研专项(2022R1031007, 2021R1031001, 2020R1031002);福建省自然科学基金项目(2021J01492);福建省农业科学院科技创新团队项目(CXTD2021003-1);国家大宗蔬菜产业体系福州综合试验站项目(CARS-23-G51);“5511”协同创新工程(XTCXGC2021003)资助


Isolation, Identification and Response to Abiotic Stress of CpWRKY2 Gene in Cucurbita pepo
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [37]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    为了解西葫芦(Cucurbita pepo)的WRKY2的功能,通过转录组测序技术从叶片中分离到1条长度为1 071 bp的cDNA,并对其进行序列分析。结果表明,该序列包含1个840 bp的开放读码框,预测编码279个氨基酸,与中国南瓜(Cucurbita moschata,XM_023091218.1)的WRKY核苷酸序列相似性为98.51%,命名为CpWRKY2 (GenBank登录号: XM_023676898.1)。CpWRKY2定位于细胞核内,CpWRKY2蛋白包含有1个保守的WRKY结构域(第201~267位),206~266位为WRKY蛋白DNA结合区域,锌指结构域(第232~264位)为C2H2型,且含有1个保守RTGHARFRRAP (第76~86位)氨基酸序列,属于典型的Ⅱd亚类WRKY家族蛋白。CpWRKY2基因上游启动子区域(ATG前的1 513 bp的序列)含有ARE、ABRE、MBS、TC-rich repeat和W-box等可能的胁迫响应顺式作用调控元件。CpWRKY2具有组织表达特异性,在花中表达量最高,其次为根和茎,在叶片和果实中的表达量较低。经5 ℃、10% PEG 6000模拟干旱胁迫,0.1 mmol/L ABA、50 mmol/L ETH、10 mmol/L SA和50 mmol/L MeJA处理后叶片中CpWRKY2均出现上调表达,因此,推测CpWRKY2基因参与了西葫芦不同非生物胁迫的防御反应。

    Abstract:

    In order to understand the function of WRKY2 in zucchini (Cucurbita pepo), a length of 1 071 bp cDNA, named CpWRKY2 (GenBank accession No. XM_023676898.1), was isolated from leaves by using transcriptome sequencing technology (i.e. RNA-seq). The cDNA contains an 840 bp open reading frame (ORF) encoding 279 amino acids. The nucleotide sequence of ORF was sharing over 98.51% with that from Cucurbita moschata (GenBank accession No.: XM_023091218.1), indicating a highly conservative evolution. CpWRKY2 protein was located in the nucleus, containing a conserved WRKY domain (position 201-267), a WRKY DNA binding domain (position 206-266), a zinc finger domain (position 232-264) of the C2H2 type, and a conserved RTGHARFRRAP (positions 76-86) amino acid sequence, which belonged to the typical IId subclass WRKY family proteins. The upstream promoter region of CpWRKY2 gene (1 513 bp before ATG) contained possible stress response cis-acting elements, such as ARE, ABRE, MBS, TC-rich repeat, and W-box. CpWRKY2 expression had tissue specificity, which was the highest in flowers, followed by roots and stems, and the lowest in leaves and fruits. Moreover, the expression of CpWRKY2 was overall up-regulated under stresses, such as 5 ℃, 10% PEG 6000, 0.1 mmol/L ABA, 50 mmol/L ETH, 10 mmol/L SA, and 50 mmol/L MeJA, suggesting CpWRKY2 gene might be involved in defense response to different abiotic stresses of C. pepo.

    参考文献
    [1] CHEN C H, CHEN X Q, HAN J, et al. Genome-wide analysis of the WRKY gene family in the cucumber genome and transcriptome-wide identification of WRKY transcription factors that respond to biotic and abiotic stresses [J]. BMC Plant Biol, 2020, 20(1): 443. doi: 10.1186/s12870-020-02625-8.
    [2] LI W X, PANG S Y, LU Z G, et al. Function and mechanism of WRKY transcription factors in abiotic stress responses of plants [J]. Plants, 2020, 9(11): 1515. doi: 10.3390/plants9111515.
    [3] BAI Y L, SUNARTI S, KISSOUDIS C, et al. The role of tomato WRKY genes in plant responses to combined abiotic and biotic stresses [J]. Front Plant Sci, 2018, 9: 801. doi: 10.3389/fpls.2018.00801.
    [4] WANI S H, ANAND S, SINGH B, et al. WRKY transcription factors and plant defense responses: Latest discoveries and future prospects [J]. Plant Cell Rep, 2021, 40(7): 1071-1085. doi: 10.1007/s00299-021-02691-8.
    [5] SUN W J, MA Z T, CHEN H, et al. Genome-wide investigation of WRKY transcription factors in Tartary buckwheat (Fagopyrum tataricum) and their potential roles in regulating growth and development [J]. PeerJ, 2020, 8: e8727. doi: 10.7717/peerj.8727.
    [6] YANG S, CAI W W, SHEN L, et al. A CaCDPK29-CaWRKY27b module promotes CaWRKY40-mediated thermotolerance and immunity to Ralstonia solanacearum in pepper [J]. New Phytol, 2022, 233(4): 1843-1863. doi: 10.1111/NPH.17891.
    [7] YUAN Y, REN S Y, LIU X F, et al. SlWRKY35 positively regulates carotenoid biosynthesis by activating the MEP pathway in tomato fruit [J]. New Phytol, 2022, 234(1): 164-178. doi: 10.1111/nph.17977.
    [8] EULGEM T, RUSHTON P J, ROBATZEK S, et al. The WRKY super-family of plant transcription factors [J]. Trends Plant Sci, 2000, 5(5): 199-206. doi: 10.1016/S1360-1385(00)01600-9.
    [9] HU W J, REN Q Y, CHEN Y L, et al. Genome-wide identification and analysis of WRKY gene family in maize provide insights into regulatory network in response to abiotic stresses [J]. BMC Plant Biol, 2021, 21(1): 427. doi: 10.1186/s12870-021-03206-z.
    [10] LIU J T, ZENG M J, WEN W X, et al. Cloning and drought response pattern of CpNCED2, a 9-cis-epoxycarotenoid dioxygenase gene from zucchini (Cucurbita pepo L.) [J]. J Nucl Agric Sci, 2021, 35(8): 1751-1760. 刘建汀, 曾美娟, 温文旭, 等. 西葫芦9-顺式-环氧类胡萝卜素双加氧酶CpNCED2基因的克隆及其干旱响应模式研究[J]. 核农学报, 2021, 35(8): 1751-1760. doi: 10.11869/j.issn.100-8551.2021.08.1751.
    [11] LIU J T, WANG B, LI Y P, et al. RNA sequencing analysis of low temperature and low light intensity-responsive transcriptomes of zucchini (Cucurbita pepo L.) [J]. Sci Hort, 2020, 265: 109263. doi: 10.1016/j.scienta.2020.109263.
    [12] HU Q, AO C W, WANG X R, et al. GhWRKY1-like, a WRKY transcription factor, mediates drought tolerance in Arabidopsis via modulating ABA biosynthesis[J]. BMC Plant Biol, 2021, 21(1): 458. doi: 10.1186/S12870-021-03238-5.
    [13] NEGI N, KHURANA P. A salicylic acid inducible mulberry WRKY transcription factor, MiWRKY53 is involved in plant defence response [J]. Plant Cell Rep, 2021, 40(11): 2151-2171. doi: 10.1007/s00299-021-02710-8.
    [14] YIN W C, WANG X H, LIU H, et al. Overexpression of VqWRKY31 enhances powdery mildew resistance in grapevine by promoting salicylic acid signaling and specific metabolite synthesis [J]. Hort Res, 2022, 9: uhab064. doi: 10.1093/HR/UHAB064.
    [15] LEE F C, YEAP W C, APPLETON D R, et al. Identification of drought responsive Elaeis guineensis WRKY transcription factors with sensitivity to other abiotic stresses and hormone treatments [J]. BMC Genom, 2022, 23(1): 164. doi: 10.1186/S12864-022-08378-Y.
    [16] CHENG S Y, LIU X M, LIAO Y L, et al. Genome-wide identification of WRKY family genes and analysis of their expression in response to abiotic stress in Ginkgo biloba L. [J]. Not Bot Hort Agrobo, 2019, 47(4): 1100-1115. doi: 10.15835/nbha47411651.
    [17] GOYAL P, MANZOOR M M, VISHWAKARMA R A, et al. A comprehensive transcriptome-wide identification and screening of WRKY gene family engaged in abiotic stress in Glycyrrhiza glabra [J]. Sci Rep, 2020, 10(1): 373. doi: 10.1038/s41598-019-57232-x.
    [18] GOVARDHANA M, KUMUDINI B S. In-silico analysis of cucumber (Cucumis sativus L.) genome for WRKY transcription factors and cis-acting elements [J]. Comput Biol Chem, 2020, 85: 107212. doi: 10. 1016/j.compbiolchem.2020.107212.
    [19] GULZAR F, FU J Y, ZHU C Y, et al. Maize WRKY transcription factor ZmWRKY79 positively regulates drought tolerance through elevating ABA biosynthesis [J]. Int J Mol Sci, 2021, 22(18): 10080. doi: 10.3390/ijms221810080.
    [20] ZHANG Y, YU H J, YANG X Y, et al. CsWRKY46, a WRKY transcription factor from cucumber, confers cold resistance in transgenic-plant by regulating a set of cold-stress responsive genes in an ABA-dependent manner [J]. Plant Physiol Biochem, 2016, 108: 478-487. doi: 10.1016/j.plaphy.2016.08.013.
    [21] HUANG Z, GUO H D, LIU L, et al. Heterologous expression of dehydration-inducible MfWRKY17 of Myrothamnus flabellifolia confers drought and salt tolerance in Arabidopsis [J]. Int J Mol Sci, 2020, 21 (13): 4603. doi: 10.3390/ijms21134603.
    [22] WANG Y X, MENG Q W, MA N N. Characterization and analysis of some chilling-response WRKY transcription factors in tomato [J]. Plant Physiol J, 2021, 57(6): 1349-1362. 王艺璇, 孟庆伟, 马娜娜. 番茄低温响应WRKY转录因子的鉴定和分析[J]. 植物生理学报, 2021, 57(6): 1349-1362. doi: 10.13592/j.cnki.ppj.2020.0523.
    [23] LIU J T, ZHU H S, WEN Q F, et al. Cloning and expression analysis of transcription factor LcWRKY21 gene from Luffa cylindrical [J]. Chin J Cell Biol, 2017, 39(10): 1268-1278. 刘建汀, 朱海生, 温庆放, 等. 丝瓜LcWRKY21转录因子基因的克隆与表达分析[J]. 中国细胞生物学学报, 2017, 39(10): 1268-1278. doi: 10.11844/cjcb.2017.010.0178.
    [24] LIU J T, ZHU H S, WANG B, et al. Isolation of CpActin gene from Cucurbita pepo L. and it's preliminary application as an internal standard [J]. J Plant Genet Resour, 2019, 20(1): 188-198. 刘建汀, 朱海生, 王彬, 等. 西葫芦CpActin内参基因的分离及其作为内参基因的初步应用[J]. 植物遗传资源学报, 2019, 20(1): 188-198. doi: 10.13430/j.cnki.jpgr.20180607001.
    [25] MONTERO-PAU J, BLANCA J, BOMBARELY A, et al. De novo assembly of the zucchini genome reveals a whole-genome duplication associated with the origin of the Cucurbita genus [J]. Plant Biotechnol J, 2018, 16(6): 1161-1171. doi: 10.1111/pbi.12860.
    [26] ERPEN L, DEVI H S, GROSSER J W, et al. Potential use of the DREB/ERF, MYB, NAC and WRKY transcription factors to improve abiotic and biotic stress in transgenic plant [J]. Plant Cell Tiss Org Cult, 2018, 132(1): 1-25. doi: 10.1007/s11240-017-1320-6.
    [27] ZHOU J, ZENG M Y, AN X M. Identification of Populus trichocarpa WRKY gene family and its' response to drought stress [J]. Chin J Cell Biol, 2019, 41(11): 2160-2173. 周静, 曾玫艳, 安新民. 杨树WRKY基因家族鉴定及其干旱胁迫响应模式分析[J]. 中国细胞生物学学报, 2019, 41(11): 2160-2173. doi: 10.11844/cjcb.2019.11.0012.
    [28] ZHENG J J, ZHANG Z L, TONG T, et al. Genome-wide identification of WRKY gene family and expression analysis under abiotic stress in barley [J]. Agronomy, 2021, 11(3): 521. doi: 10.3390/agronomy11030521.
    [29] WEN F, WU X Z, LI T J, et al. Characterization of the WRKY gene family in Akebia trifoliata and their response to Colletotrichum acutatum [J]. BMC Plant Biol, 2022, 22(1): 115. doi: 10.1186/S12870-022-03511-1.
    [30] GARRIDO-GALA J, HIGUERA J J, RODRÍGUEZ-FRANCO A, et al. A comprehensive study of the WRKY Transcription factor family in strawberry [J]. Plants, 2022, 11(12): 1585. doi: 10.3390/plants11121585.
    [31] QIN Y, YU H X, CHENG S Y, et al. Genome-aide analysis of the WRKY gene family in Malus domestica and the role of MdWRKY70L in response to drought and salt stresses [J]. Genes, 2022, 13(6): 1068. doi: 10.3390/genes13061068.
    [32] REBOLEDO G, AGORIO A, DE LEÓN I P. Moss transcription factors regulating development and defense responses to stress [J]. J Exp Bot, 2022, 73(13): 4546-4561. doi: 10.1093/jxb/erac055.
    [33] LIU J J, WANG X M, MA L, et al. Isolation, identification, and response to abiotic stress of MsWRKY42 gene from Medicago sativa L. [J]. Sci Agric Sin, 2020, 53(17): 3455-3466. 刘佼佼, 王学敏, 马琳, 等. 紫花苜蓿MsWRKY42的分离、鉴定及其对非生物胁迫的响应[J]. 中国农业科学, 2020, 53(17): 3455-3466. doi: 10.3864/j.issn.0578-1752.2020.17.004.
    [34] ZHANG T T, XU Y, DING Y D, et al. Identification and expression analysis of WRKY gene family in response to abiotic stress in Dendrobium catenatum [J]. Front Genet, 2022, 13: 800019. doi: 10.3389/fgene.2022.800019.
    [35] JAVED T, ZHOU J R, LI J, et al. Identification and expression profiling of WRKY family genes in sugarcane in response to bacterial pathogen infection and nitrogen implantation dosage [J]. Front Plant Sci, 2022, 13: 917953. doi: 10.3389/fpls.2022.917953.
    [36] YAN L, LIU Z Q, XU Y H, et al. Auto- and cross-repression of three Arabidopsis WRKY transcription factors WRKY18, WRKY40, and WRKY60 negatively involved in ABA signaling [J]. J Plant Growth Regul, 2013, 32(2): 399-416. doi: 10.1007/s00344-012-9310-8.
    [37] LIN L K, YUAN K L, HUANG Y D, et al. A WRKY transcription factor PbWRKY40 from Pyrus betulaefolia functions positively in salt tolerance and modulating organic acid accumulation by regulating PbVHA-B1 expression [J]. Environ Exp Bot, 2022, 196: 104782. doi: 10.1016/j.envexpbot.2022.104782.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘建汀,曾美娟,张前荣,叶新如,陈敏氡,裘波音,王彬,李永平,朱海生,温庆放.西葫芦CpWRKY2基因的分离、鉴定及其对非生物胁迫分析[J].热带亚热带植物学报,2023,31(6):816~826

复制
分享
文章指标
  • 点击次数:134
  • 下载次数: 585
  • HTML阅读次数: 337
  • 引用次数: 0
历史
  • 收稿日期:2022-07-04
  • 在线发布日期: 2023-11-24
  • 出版日期: 2023-11-20
文章二维码