纳米二氧化钛对生菜的生长效应分析
作者:
基金项目:

中央高校基本科研业务费专项基金(202210004009)资助


Analysis on the Growth Effect of Nano Titanium Dioxide on Lactuca sativa
Author:
Fund Project:

The Fundamental Research Funds for the Central Universities ( No. 202210004009)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    为了阐明纳米二氧化钛颗粒(TiO2NPs)对生菜(Lactuca sativa)生长的影响,采用自行设计的水培装置探究不同浓度TiO2NPs (300~1 200 mg/L)下,生菜生长和生理生化指标的变化。结果表明,300 mg/L TiO2NPs能促进生菜幼苗的根长、茎长、叶表面积、鲜重和干重;随着TiO2 NPs浓度增大,生菜的生长指标呈现下降趋势,但仍优于对照组。生菜体内的抗氧化酶(SOD、POD)在低TiO2 NPs浓度(300 mg/L)时,活性明显下降;随着TiO2 NPs浓度增大,这两种抗氧化酶活性逐渐增强。因此,生菜对TiO2NPs胁迫具有浓度依赖性,表现为“低促高抑”,且能够通过抗氧化酶系统来减轻TiO2NPs伤害。

    Abstract:

    In order to clarify the effect of nano titanium dioxide particles (TiO2 NPs) on growth of Lactuca sativa, the growth, physiological and biochemical indexes of L. sativa were studied treated with TiO2 NPs (300-1 200 mg/L) by using a self-designed hydroponic device. The results showed that the root length, stem length, leaf surface area, fresh weight and dry weight of seedlings increased treated with 300 mg/L TiO2 NPs. With the increasing of TiO2 NPs concentration, the growth indexes showed a downward trend, but still higher than those of the control group. The activities of antioxidant enzymes (SOD, POD) in L. sativa decreased significantly at low TiO2 NPs concen-tration (300 mg/L). With the increament of TiO2 NPs concentration, the activities of SOD, POD gradually increased. Therefore, it was suggested that L. sativa has a concentration-dependent effect on TiO2 stress, showing "promotion at low concentration and inhibition at high concentration". The damage of nanomaterials of L. sativa could be reduced by its antioxidant enzyme system.

    参考文献
    [1] WANG J C, YI G B. Synthesis and application of silver nanoparticles as antimicrobial agent in cosmetics[J]. Appl Chem Ind, 2018, 47(10):2094–2096.[王建超, 易国斌. 纳米银化妆品抗菌剂研制及应用[J]. 应用化工, 2018, 47(10):2094–2096. doi:10.3969/j.issn.1671-3206. 2018.10.012.]
    [2] LI Y Y, XUE B, ZHAN P F, et al. Application of silkworm feed additive based on nano TiO2 in production[J]. Jiangsu Agric Sci, 2017, 45(3):134–136.[李洋洋, 薛彬, 占鹏飞, 等. 基于纳米TiO2开发的家蚕饲料添加剂在生产上的应用[J]. 江苏农业科学, 2017, 45(3):134–136. doi:10.15889/j.issn.1002-1302.2017.03.038.]
    [3] PAVANI K V, BEULAH M, POOJITHA G U S. The effect of zinc oxide nanoparticles (ZnO NPs) on Vigna mungo L. seedling growth and antioxidant activity[J]. Nanosci Nanotechnol Asia, 2020, 10(2):117–122. doi:10.2174/2210681208666180820150647.
    [4] PENG Q Q, YANG J Y, ZHONG M Z, et al. Effects of ZnO nanopar-ticles on the germination and seedling growth of four legume seeds[J]. J Agro-Environ Sci, 2021, 40(6):1174–1182.[彭晴晴, 杨静雅, 钟民正, 等. ZnO NPs对四种豆科种子发芽及幼苗生长的影响[J]. 农业环境科学学报, 2021, 40(6):1174–1182. doi:10.11654/jaes.2020-1462.]
    [5] LAN L Z, ZHAO Q F. Accumulation, transport of nano-TiO2 and their effects on growth and physiology in Arabidopsis thaliana[J]. Acta Sci Circumst, 2018, 38(2):837–846.[兰丽贞, 赵群芬. 纳米TiO2在拟南芥中的富集、转运及对其生长和生理的影响[J]. 环境科学学报, 2018, 38(2):837–846. doi:10.13671/j.hjkxxb.2017.0379.]
    [6] SUI H J. Effect of aging time of TiO2 and CeO2 engineered nano-particles in soil on growth of high plant[D]. Qingdao:Ocean University of China, 2014:31–32.[隋海君. TiO2和CeO2人工纳米颗粒在土壤中的老化时间对高等植物生长的影响[D]. 青岛:中国海洋大学, 2014:31–32.]
    [7] WU B Y. The toxicity and metabolic effects of TiO₂ nano particles on rice (Oryza sativa L.)[D]. Hangzhou:Zhejiang University, 2017:41– 45.[吴碧莹. 纳米二氧化钛对水稻的毒性及代谢影响初探[D]. 杭州:浙江大学, 2017:41–45.]
    [8] XIE D D, WEI Y P, SONG M B, et al. Effects of prochloraz with nano-TiO2 on storage quality of Dioscorea opposite[J]. Jiangsu Agric Sci, 2019, 47(5):166–169.[谢冬娣, 韦燕佩, 宋慕波, 等. 咪鲜胺添加纳米TiO2对淮山贮藏品质的影响[J]. 江苏农业科学, 2019, 47(5):166–169. doi:10.15889/j.issn.1002-1302.2019.05.041.]
    [9] TAO X Q, WANG M L, QIAO S B. Changes of enzyme activity during the preservation of 'Jinqiu' pear with chitosan/nano TiO2 composite coating[J]. Jiangsu Agric Sci, 2014, 42(1):225–226.[陶希芹, 王明力, 谯顺彬. 壳聚糖/纳米TiO2复合涂膜保鲜金秋梨过程中酶活性变化[J]. 江苏农业科学, 2014, 42(1):225–226. doi:10.3969/j.issn.1002-1302.2014.01.083.]
    [10] LIU Y, CHEN J Q, YANG Z Y, et al. Growth and physiological indexes of wheat seedlings under cadmium stress alleviated by nano titanium dioxide[J]. Environ Eng, 2021, 39(5):184–189.[刘娅, 陈金全, 杨子月, 等. 纳米二氧化钛缓解镉胁迫下小麦幼苗生长及生理变化[J]. 环境工程, 2021, 39(5):184–189. doi:10.13205/j.hjgc.202105026.]
    [11] WANG M M, QIANG L W, WANG W, et al. Effects of Nano titanium dioxide on the toxicity of Chinese cabbage under cadmium stress[J]. J Agro-Environ Sci, 2020, 39(6):1185–1195.[王苗苗, 强沥文, 王伟, 等. 纳米二氧化钛对镉胁迫下小白菜毒性效应的影响[J]. 农业环境科学学报, 2020, 39(6):1185–1195. doi:10.11654/jaes.2019-1422.]
    [12] LAI Y, WANG R, LI X, et al. Effects of different dosage of nano-materials on germination of Lactuca sativa L. seeds[J]. Vegetables, 2019(4):10–14.[赖钰, 汪瑞, 李鑫, 等. 不同用量纳米材料对生菜种子发芽的影响[J]. 蔬菜, 2019(4):10–14.]
    [13] WANG R, LAI Y, YANG T B, et al. Effects of different amounts of aminated carbon nanotubes on the growth and quality of Lactuca sativa L.[J]. S China Agric, 2019, 13(22):26–28.[汪瑞, 赖钰, 杨桐彬, 等. 不同用量氨基化碳纳米管对生菜生长和品质的影响[J]. 南方农业, 2019, 13(22):26–28, 31. doi:10.19415/j.cnki.1673-890x.2019.22.008.]
    [14] GUI X. Bio-effects and mechanisms of several Nano-oxide materials[D]. Beijing:China Agricultural University, 2016:24–32.[桂新. 几种纳米氧化物的生物效应与机制[D]. 北京:中国农业大学, 2016:24–32.]
    [15] XU J B, WANG Y L, LUO X S, et al. Influence of Fe3O4 nanoparticles on lettuce (Lactuca sativa L.) growth and soil bacterial community structure[J]. Chin J Appl Ecol, 2017, 28(9):3003–3010.[徐江兵, 王艳玲, 罗小三, 等. 纳米Fe3O4对生菜生长及土壤细菌群落结构的影响[J]. 应用生态学报, 2017, 28(9):3003–3010. doi:10.13287/j. 1001-9332.201709.033.]
    [16] HAJRA A, MONDAL N K. Effects of ZnO and TiO2 nanoparticles on germination, biochemical and morphoanatomical attributes of Cicer arietinum L[J]. Energy Ecol Environ, 2017, 2(4):277–288. doi:10. 1007/s40974-017-0059-6.
    [17] WEN S X, WANG Y L. Effect of nano titanium dioxide with different particle size on the seed germination and plant growth and physiology of Ceratophyllum demersum in hydroponic experiments[J]. Asian J Ecotoxicol, 2018, 13(6):268–277.[文双喜, 王毅力. 水培实验中不同粒径纳米TiO2对金鱼藻种子发芽和植株生长和生理的影响[J]. 生态毒理学报, 2018, 13(6):268–277.]
    [18] HOU D Y, FENG J, XIE S L. Toxic effects of nanoparticle TiO2 stress on Chara vulgaris L.[J]. Acta Sci Circumst, 2012, 32(6):1481–1486.[侯东颖, 冯佳, 谢树莲. 纳米二氧化钛胁迫对普生轮藻的毒性效应[J]. 环境科学学报, 2012, 32(6):1481–1486. doi:10.13671/j.hjkxxb. 2012.06.006.]
    [19] KUMAR D, YUSUF M A, SINGH P, et al. Modulation of antioxidant machinery in α-tocopherol-enriched transgenic Brassica juncea plants tolerant to abiotic stress conditions[J]. Protoplasma, 2013, 250(5):1079–1089. doi:10.1007/s00709-013-0484-0.
    [20] THUESOMBAT P, HANNONGBUA S, AKASIT S, et al. Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth[J]. Ecotoxicol Environ Safety, 2014, 104:302-309. doi:10.1016/j.ecoenv.2014.03.022.
    [21] CHEN J, XIEERWANIGULI S L, DENG X Y, et al. Toxic effects of nanoparticle TiO2 on Scenedesmus obliquus[J]. Acta Agric Univ Jiangxi, 2014, 36(1):238–242.[成婕, 谢尔瓦妮古丽·苏来曼, 邓祥元, 等. 纳米二氧化钛对斜生栅藻的毒性效应研究[J]. 江西农业大学学报, 2014, 36(1):238–242. doi:10.3969/j.issn.1000-2286.2014.01.037.]
    [22] ZHAO G L. Study on solid-state fermentation of polypeptides and preparation of foliar fertilizer with them and nano-titanium dioxide[D]. Nanjing:Nanjing Agricultural University, 2017:38.[赵光雷. 多肽固体发酵工艺及其与纳米二氧化钛制成叶面肥的研究[D]. 南京:南京农业大学, 2017:38.]
    [23] KHODAKOVSKAYA M V, DE SILVA K, BIRIS A S, et al. Carbon nanotubes induce growth enhancement of tobacco cells[J]. ACS Nano, 2012, 6(3):2128–2135. doi:10.1021/nn204643g.
    [24] NEL A, XIA T, MÄDLER L, et al. Toxic potential of materials at the nanolevel[J]. Science, 2006, 311(5761):622–627. doi:10.1126/science. 1114397.
    [25] GUO M. Phytotoxicity of typical manufactured nanomaterials on rice seedlings (Oryza sativa L.)[D]. Changsha:Hunan University, 2016:19–22.[郭敏. 典型人工纳米材料对水稻的植物毒性研究[D]. 长沙:湖南大学, 2016:19–22.]
    相似文献
    引证文献
引用本文

刘晓宇,张雪薇,戴昊鸣,陈斯琳,王梦华,张凯悦,王纪元,成喜雨,晏琼.纳米二氧化钛对生菜的生长效应分析[J].热带亚热带植物学报,2023,31(5):679~685

复制
分享
文章指标
  • 点击次数:176
  • 下载次数: 623
  • HTML阅读次数: 542
  • 引用次数: 0
历史
  • 收稿日期:2022-06-01
  • 最后修改日期:2022-08-14
  • 录用日期:2022-09-30
  • 在线发布日期: 2023-09-26
  • 出版日期: 2023-09-20
文章二维码