巨桉扩展蛋白EgrEXPA8EgrEXPA10基因的克隆和表达特性分析
作者:
基金项目:

十四五国家重点研发计划课题(2022YFD2200203)资助


Cloning and Expression Analysis of EgrEXPA8 and EgrEXPA10 Genes in Eucalyptus grandis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为探讨扩展蛋白在桉树生长发育中的作用,以在桉树初生生长到次生生长转换转录组测序中筛选出的差异表达基因EgrEXPA8EgrEXPA10为基础,从巨桉(Eucalyptus grandis)中克隆了2个扩展蛋白基因EgrEXPA8EgrEXPA10,分别编码249和244个氨基酸,属于亲水蛋白,但EgrEXPA8稳定性高于EgrEXPA10。qRT-PCR分析表明,EgrEXPA8EgrEXPA10基因均在幼叶和茎尖组织中表达量较高,在木质部和韧皮部表达量较低;且在茎顶端初生生长阶段表达量较高,而在下部次生生长节间表达量较低,可能其主要参与巨桉的初生生长或者负调控次生生长;另外在盐胁迫、茉莉酸甲酯处理下其均被抑制表达;而在水杨酸、缺硼、缺磷处理下均上调表达。这说明EgrEXPA8EgrEXPA10在巨桉响应逆境胁迫时起到重要作用,且呈现出相似的调控方式。

    Abstract:

    To elucidate the function in growth and development of expansins in Eucalyptus, two expansin genes EgrEXPA8 and EgrEXPA10 were cloned based on differential expression genes in the transcriptome of transition from primary growth to secondary growth of E. grandis. EgrEXPA8 and EgrEXPA10 encoded 249 and 244 amino acids, respectively. EgrEXPA8 and EgrEXPA10 were hydrophilic proteins. However, the stability of EgrEXPA8 was higher than that of EgrEXPA10. qRT-PCR analysis showed that the expression of EgrEXPA8 and EgrEXPA10 were high in young leaves and stem apex, and low in xylem and phloem. The expression of them was high in stem apex at primary growth stage, and low in internode at secondary growth stage, indicating that the two genes might be mainly involved in primary growth or negative regulation of secondary growth in E. grandis. The expressions of EgrEXPA8 and EgrEXPA10 were inhibited under salt stress and methyl jasmonate treatment, but significantly up-regulated treated with salicylic acid, under boron and phosphorus deficiency. Therefore, it was suggested that EgrEXPA8 and EgrEXPA10 genes in E. grandis would play an important role in response to stress.

    参考文献
    [1] MCQUEEN-MASON S, DURACHKO D M, COSGROVE D J. Two endogenous proteins that induce cell wall extension in plants [J]. Plant Cell, 1992, 4(11): 1425-1433. doi: 10.1105/tpc.4.11.1425.
    [2] COSGROVE D J. Plant expansins: Diversity and interactions with plant cell walls [J]. Curr Opin Plant Biol, 2015, 25: 162-172. doi: 10.1016/j.pbi.2015.05.014.
    [3] LEE Y, CHOI D, KENDE H. Expansins: Ever-expanding numbers and functions [J]. Curr Opin Plant Biol, 2001, 4(6): 527-532. doi: 10.1016/s1369-5266(00)00211-9.
    [4] LI H Y, SHI Y, DING Y N, et al. Bioinformatics analysis of expansin gene family in poplar genome [J]. J Beijing For Univ, 2014, 36(2): 59-67. 李昊阳, 施杨, 丁亚娜, 等. 杨树扩展蛋白基因家族的生物信息学分析[J]. 北京林业大学学报, 2014, 36(2): 59-67. doi: 10.13332/j.cnki.jbfu.2014.02.014.
    [5] DAL SANTO S, VANNOZZI A, TORNIELLI G B, et al. Genomewide analysis of the expansin gene superfamily reveals grapevine-specific structural and functional characteristics [J]. PLoS One, 2013, 8(4): e62206. doi: 10.1371/journal.pone.0062206.
    [6] KENDE H, BRADFORD K, BRUMMELL D, et al. Nomenclature for members of the expansin superfamily of genes and proteins [J]. Plant Mol Biol, 2004, 55(3): 311-314. doi: 10.1007/s11103-004-0158-6.
    [7] YU Z M, KANG B, HE X W, et al. Root hair-specific expansins modulate root hair elongation in rice [J]. Plant J, 2011, 66(5): 725-734. doi: 10.1111/j.1365-313x.2011.04533.x.
    [8] YAN A, WU M J, YAN L M, et al. AtEXP2 is involved in seed germination and abiotic stress response in Arabidopsis [J]. PLoS One, 2014, 9(1): e85208. doi: 10.1371/journal.pone.0085208.
    [9] MORRIS K, LINKIES A, MÜLLER K, et al. Regulation of seed germination in the close Arabidopsis relative Lepidium sativum: A global tissue-specific transcript analysis [J]. Plant Physiol, 2011, 155(4): 1851-1870. doi: 10.1104/pp.110.169706.
    [10] ZHAO W W, FENG L, HU S B, et al. Cloning and expression analysis of CpEXPA2 gene related to softening of papaya fruit [J]. J Fruit Sci, 2018, 35(7): 785-793. 赵湾湾, 冯力, 胡绍彬, 等. 番木瓜果实软化相关CpEXPA2基因的克隆与表达分析[J]. 果树学报, 2018, 35(7): 785-793. doi: 10.13925/j.cnki.gsxb.20180101.
    [11] HAYAMA H, ITO A, MORIGUCHI T, et al. Identification of a new expansin gene closely associated with peach fruit softening [J]. Postharv Biol Technol, 2003, 29(1): 1-10. doi: 10.1016/s0925-5214(02)00216-8.
    [12] GRAY-MITSUMUNE M, MELLEROWICZ E J, ABE H, et al. Expansins abundant in secondary xylem belong to subgroup A of the α-expansin gene family [J]. Plant Physiol, 2004, 135(3): 1552-1564. doi: 10.1104/pp.104.039321.
    [13] BAJWA K S, SHAHID A A, RAO A Q, et al. Stable transformation and expression of GhEXPA8 fiber expansin gene to improve fiber length and micronaire value in cotton [J]. Front Plant Sci, 2015, 6: 838. doi: 10.3389/fpls.2015.00838.
    [14] KULUEV B, AVALBAEV A, MIKHAYLOVA E, et al. Expression profiles and hormonal regulation of tobacco expansin genes and their involvement in abiotic stress response [J]. Plant Physiol, 2016, 206: 1-12. doi: 10.1016/j.jplph.2016.09.001.
    [15] GOH H H, SLOAN J, DORCA-FORNELL C, et al. Inducible repression of multiple expansin genes leads to growth suppression during leaf development [J]. Plant Physiol, 2012, 159(4): 1759-1770. doi: 10.1104/pp.112.200881.
    [16] CHEN Y H, HAN Y Y, KONG X Z, et al. Ectopic expression of wheat expansin gene TaEXPA2 improved the salt tolerance of transgenic tobacco by regulating Na+/K+ and antioxidant competence [J]. Physiol Plant, 2017, 159(2): 161-177. doi: 10.1111/ppl.12492.
    [17] ZHAO M R, HAN Y Y, FENG Y N, et al. Expansins are involved in cell growth mediated by abscisic acid and indole-3-acetic acid under drought stress in wheat [J]. Plant Cell Rep, 2012, 31(4): 671-685. doi: 10.1007/s00299-011-1185-9.
    [18] ZHANG H, DING Y N, ZHI J K, et al. Over-expression of the poplar expansin gene PtoEXPA12 in tobacco plants enhanced cadmium accumulation [J]. Int J Biol Macromol, 2018, 116: 676-682. doi: 10.1016/j.ijbiomac.2018.05.053.
    [19] MOLLET J C, LEROUX C, DARDELLE F, et al. Cell wall composition, biosynthesis and remodeling during pollen tube growth [J]. Plants, 2013, 2(1): 107-147. doi: 10.3390/plants2010107.
    [20] LI L C, BEDINGER P A, VOLK C, et al. Purification and characterization of four β-expansins (Zea m 1 isoforms) from maize pollen [J]. Plant Physiol, 2003, 132(4): 2073-2085. doi: 10.1104/pp.103.020024.
    [21] TABUCHI A, LI L C, COSGROVE D J. Matrix solubilization and cell wall weakening by β-expansin (group-1 allergen) from maize pollen [J]. Plant J, 2011, 68(3): 546-559. doi: 10.1111/j.1365-313x.2011.04705.x.
    [22] RUSSELL S D, BHALLA P L, SINGH M B. Transcriptome-based examination of putative pollen allergens of rice (Oryza sativa ssp. japonica) [J]. Mol Plant, 2008, 1(5): 751-759. doi: 10.1093/mp/ssn036.
    [23] XIE Y J. Research progress on Eucalyptus breeding and its strategy in China [J]. World For Res, 2011, 24(4): 50-54. 谢耀坚. 中国桉树育种研究进展及宏观策略[J]. 世界林业研究, 2011, 24(4): 50-54. doi: 10.13348/j.cnki.sjlyyj.2011.04.015.
    [24] MYBURG A A, GRATTAPAGLIA D, TUSKAN G A, et al. The genome of Eucalyptus grandis [J]. Nature, 2014, 510(7505): 356-362. doi: 10.1038/nature13308.
    [25] ZHAN N, XIE Y J, CHEN H P, et al. Bioinformatics analysis of EXP gene family in Eucalyptus grandis [J]. For Res, 2018, 31(6): 39-46. 詹妮, 谢耀坚, 陈鸿鹏, 等. 巨桉EXP基因家族的生物信息学分析[J]. 林业科学研究, 2018, 31(6): 39-46. doi: 10.13275/j.cnki.lykxyj.2018.06.006.
    [26] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method [J]. Methods, 2001, 25(4): 402-408. doi: 10.1006/meth.2001.1262.
    [27] SAMPEDRO J, COSGROVE D J. The expansin superfamily [J]. Genome Biol, 2005, 6(12): 242. doi: 10.1186/gb-2005-6-12-242.
    [28] COSGROVE D J. Loosening of plant cell walls by expansins [J]. Nature, 2000, 407(6802): 321-326. doi: 10.1038/35030000.
    [29] CHO H T, COSGROVE D J. Regulation of root hair initiation and expansin gene expression in Arabidopsis [J]. Plant Cell, 2002, 14(12): 3237-3253. doi: 10.1105/tpc.006437.
    [30] PARK C H, KIM T W, SON S H, et al. Brassinosteroids control AtEXPA5 gene expression in Arabidopsis thaliana [J]. Phytochemistry, 2010, 71(4): 380-387. doi: 10.1016/j.phytochem.2009.11.003.
    [31] YAN H F. The Brassinosteroid's effect on the secondary growth of Eucalyptus grandis and preliminary function analysis of the related genes [D]. Beijing: Chinese Academy of Forestry, 2015. 闫慧芳. 油菜素内酯对巨桉次生生长影响及转导途径中相关基因功能初步分析[D]. 北京: 中国林业科学研究院, 2015.
    [32] ZHENG L W, MA J J, ZHANG L Z, et al. Revealing critical mechanisms of BR-mediated apple nursery tree growth using iTRAQ-based proteomic analysis [J]. J Proteomics, 2018, 173: 139-154. doi: 10.1016/j.jprot.2017.12.007.
    [33] PRAMOD S, ANJU M, RAJESH H, et al. Effect of exogenously applied 24-epibrassinolide and brassinazole on xylogenesis and micro-distribution of cell wall polymers in Leucaena leucocephala (Lam) De Wit [J]. J Plant Growth Regul, 2021, 41(1): 404-416. doi: 10.1007/s0 0344-021-10313-6.
    [34] WANG F Q, ZHOU Y, HUANG Y, et al. Cloning and expression analysis of the expansin gene RgEXPA10 in Rehmannia glutinosa [J]. Acta Pharm Sin, 2015, 50(2): 233-240. 王丰青, 周艳, 黄勇, 等. 地黄扩展蛋白基因RgEXPA10的克隆与表达分析[J]. 药学学报, 2015, 50(2): 233-240. doi: 10.16438/j.0513-4870.2015.02.004.
    [35] HAN Y Y, LI A X, LI F, et al. Characterization of a wheat (Triticum aestivum L.) expansin gene, TaEXPB23, involved in the abiotic stress response and phytohormone regulation [J]. Plant Physiol Biochem, 2012, 54: 49-58. doi: 10.1016/j.plaphy.2012.02.007.
    [36] WU T, ZENG N, LI W, et al. Genome-wide identification of the expansin gene family and differences in transcriptional responses to boron deficiency in Brassica napus L. [J]. Plant Sci J, 2021, 39(1): 59-75. 吴涛, 曾妮, 李巍, 等. 甘蓝型油菜扩展蛋白家族的全基因组鉴定及其对缺硼胁迫响应的差异分析[J]. 植物科学学报, 2021, 39(1): 59-75. doi: 10.11913/PSJ.2095-0837.2021.10059.
    引证文献
引用本文

罗萍,王晓萍,张昊楠,范春节,王玉娇,徐建民.巨桉扩展蛋白EgrEXPA8EgrEXPA10基因的克隆和表达特性分析[J].热带亚热带植物学报,2023,31(6):827~834

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-05-19
  • 在线发布日期: 2023-11-24
  • 出版日期: 2023-11-20
文章二维码