油茶DELLA基因的克隆和表达分析
作者:
基金项目:

江西省教育厅科技项目(GJJ201803);江西省自然科学基金项目(20202BABL215016)资助


Cloning and Expression Analysis of DELLA Genes in Camellia oleifera
Author:
Fund Project:

the Research Project of Jiangxi Provincial Department of Science and Technology (Grant no. GJJ201803) and the Natural Science Foundation of Jiangxi Province (Grant no. 20202BABL215009)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了解油茶(Camellia oleifera)中DELLA基因功能及其表达特性,采用PCR技术从‘长林4号’油茶中克隆了5个DELLA基因,命名为CoDELLA1~CoDELLA5,对其编码的5个CoDELLA蛋白进行生物信息学分析,并对5个DELLA基因的表达模式以及激素响应活性进行了分析。结果表明,5个CoDELLA基因的编码区长度分别为1 791、1 875、1 848、1 593和1 581 bp,分别编码597、625、616、531和527个氨基酸。5个CoDELLA蛋白的氨基酸序列相似度较高,丝氨酸残基为主要的潜在磷酸化位点,CoDELLA蛋白N端均含有典型的DELLA结构域。不同物种中DELLA蛋白的系统发育存在差异,CoDELLA与茶树的CsDELLA同源性最高。CoDELLA基因在油茶不同组织中的表达也存在差异,且赤霉素和独脚金内酯等多种激素和非生物胁迫对其表达具有调控作用。CoDELLA基因可能在油茶的生长发育和非生物胁迫响应中发挥重要作用。

    Abstract:

    To reveal the function and expression pattern of DELLA genes in Camellia oleifera, five DELLA genes, named CoDELLA1, CoDELLA2, CoDELLA3, CoDELLA4 and CoDELLA5, were cloned from 'Changlin 4' by PCR technique. The bioimformation of 5 encoding CoDELLA were analyzed, as well as expression patterns of 5 CoDELL and hormone response activities. The results showed that the CDS length of five CoDELLA genes were 1 791, 1 875, 1 848, 1 593 and 1 581 bp, encoding 597, 625, 616, 531 and 527 amino acids, respectively. The amino acid sequences of the five CoDELLA proteins were highly similar, and serine residues were the main potential phosphorylation sites. The N-terminal of CoDELLA proteins all contained typical DELLA domains. There were differences in the phylogeny of DELLA proteins from different species, CoDELLA had the highest homology with CsDELLA in C. sinensis. The expression of CoDELLA gene in different tissues was also different, which was regulated by various hormones and abiotic stresses such as gibberellin and aurolactone. Therefore, it was suggested that CoDELLA genes might play important role in the growth of C. oleifera and response to abiotic stress.

    参考文献
    [1] MA L, CHEN Y Z. Analyzed camellia oil of function characteristics[J]. Chin Agric Sci Bull, 2009, 25(8):82-84.[马力, 陈永忠. 茶油的功能特性分析[J]. 中国农学通报, 2009, 25(8):82-84.]
    [2] LIU Q T, NIE R B, HUANG Y L, et al. Studies on increasing flue-cured tobacco seed vigor with gibberellins[J]. Seed, 2008, 27(3):75-77.[刘启彤, 聂荣邦, 黄一兰, 等. 赤霉素提高烤烟种子活力的研究[J]. 种子, 2008, 27(3):75-77. doi:10.3969/j.issn.1001-4705.2008.03.024.]
    [3] LI N. The influence of spraying Gibberellin acid on rice seed quality[J]. Guangdong Agric Sci, 2011, 38(15):13-15.[李楠. 喷施赤霉素对水稻种子品质的影响[J]. 广东农业科学, 2011, 38(15):13-15. doi:10.3969/j.issn.1004-874X.2011.15.004.]
    [4] LIU W, XIE B, NI G P, et al. Influence of gibberellin and amino acid on branch and leaf growth of Syzygium grijsii[J]. Bull Bot Res, 2011, 31(2):218-226.[刘玮, 谢冰, 倪国平, 等. 赤霉素和氨基酸对三叶赤楠(Syzygium grijsii)枝叶生长影响研究[J]. 植物研究, 2011, 31(2):218-226. doi:10.7525/j.issn.1673-5102.2011.02.016.]
    [5] CHEN X, SUN Y, LI J A. Effects of GA and PP333 on growth of Camellia oleifera seedlings[J]. Nonwood For Res, 2013, 31(2):86-90.[陈显, 孙颖, 李建安. 赤霉素和多效唑对油茶幼株生长的影响[J]. 经济林研究, 2013, 31(2):86-90. doi:10.14067/j.cnki.1003-8981.2013. 02.028.]
    [6] ZHANG Q, SU Y Q, XU Y M. Effect of harvesting time on contents of secondary metabolites in the leaf of Eucommia ulmoides treated by gibberellin acid[J]. J NW For Univ, 2010, 25(6):130-133.[张强, 苏印泉, 徐咏梅. 采样时间对赤霉素处理杜仲叶次生代谢物含量的影响[J]. 西北林学院学报, 2010, 25(6):130-133.]
    [7] YUE C, ZENG J M, CAO H L, et al. Gibberellins metabolism and signaling pathway in higher plant[J]. Plant Physiol J, 2012, 48(2):118-128.[岳川, 曾建明, 曹红利, 等. 高等植物赤霉素代谢及其信号转导通路[J]. 植物生理学报, 2012, 48(2):118-128. doi:10. 13592/j.cnki.ppj.2012.02.014.]
    [8] DAVIÈRE J M, ACHARD P. Gibberellin signaling in plants[J]. Development, 2013, 140(6):1147-1151. doi:10.1242/dev.087650.
    [9] ZHANG L, HUANG Z Y, SU S W, et al. Effects of exogenous hormones on the growth of lotus and expression of related genes[J]. J NW For Univ, 2019, 34(2):35-41.[张琳, 黄志远, 苏少文, 等. 外源激素对荷花生长及相关基因表达的影响[J]. 西北林学院学报, 2019, 34(2):35-41. doi:10.3969/j.issn.1001-7461.2019.02.06.]
    [10] HUANG X Z, JIANG C F, LIAO L L, et al. Progress on molecular foundation of GA biosynthesis pathway and signaling[J]. Chin Bull Bot, 2006, 23(5):499-510.[黄先忠, 蒋才富, 廖立力, 等. 赤霉素作用机理的分子基础与调控模式研究进展[J]. 植物学通报, 2006, 23(5):499-510. doi:10.3969/j.issn.1674-3466.2006.05.006.]
    [11] DAI C, XUE H W. Rice early flowering1, a CKI, phosphorylates DELLA protein SLR1 to negatively regulate gibberellin signalling[J]. EMBO J, 2010, 29(11):1916-1927. doi:10.1038/emboj.2010.75.
    [12] TYLER L, THOMAS S G, HU J H, et al. DELLA proteins and gibberellin-regulated seed germination and floral development in Arabidopsis[J]. Plant Physiol, 2004, 135(2):1008-1019. doi:10.1104/pp.104.039578.
    [13] HAN Y X, DAI H W, ZHENG S T, et al. Identification and expression analysis of the DELLA gene family in Camellia sinensis (L.) O. Ktze[J]. Plant Sci J, 2020, 38(5):644-653.[韩雨欣, 代洪苇, 郑姝婷, 等. 茶树DELLA基因家族的鉴定及表达分析[J]. 植物科学学报, 2020, 38(5):644-653. doi:10.11913/PSJ.2095-0837.2020.50644.]
    [14] OLSZEWSKI N, SUN T P, GUBLER F. Gibberellin signaling:Biosyn-thesis, catabolism, and response pathways[J]. Plant Cell, 2002, 14(S1):S61-S80. doi:10.1105/tpc.010476.
    [15] FU X D, RICHARDS D E, AIT-ALI T, et al. Gibberellin-mediated proteasome-dependent degradation of the barley DELLA protein SLN1 repressor[J]. Plant Cell, 2002, 14(12):3191-3200. doi:10.1105/tpc. 006197.
    [16] ZHOU P, LI Q F, XIONG M, et al. Advances in DELLA protein-mediated phytohormonal crosstalk in regulation of plant growth and development[J]. Plant Physiol J, 2020, 56(4):661-671.[周鹏, 李钱峰, 熊敏, 等. DELLA蛋白介导的激素互作调控植物生长发育研究进展[J]. 植物生理学报, 2020, 56(4):661-671. doi:10.13592/j.cnki.ppj. 2019.0570.]
    [17] ZHOU C F, LIN P, YAO X H, et al. Selection of reference genes for quantitative real-time PCR in six oil-tea Camellia based on RNA-seq[J]. Mol Biol, 2013, 47(6):836-851. doi:10.1134/S0026893313060198.
    [18] ZHU Z G, KANG X J, LOR V S, et al. Characterization of a semi-dominant dwarfing PROCERA allele identified in a screen for CRISPR/Cas9-induced suppressors of loss-of-function alleles[J]. Plant Biotechnol J, 2019, 17(2):319-321. doi:10.1111/pbi.13027.
    [19] WEN C K, CHANG C. Arabidopsis RGL1 encodes a negative regulator of gibberellin responses[J]. Plant Cell, 2002, 14(1):87-100. doi:10. 1105/tpc.010325.
    [20] TIAN R Y, GUO Y, WANG Y G, et al. Effect of gibberellin treatment and wet sand stratification on seed germination of Camellia oleifera[J]. Seed, 2010, 29(8):85-88.[田如英, 郭颖, 王元国, 等. 赤霉素浸种与湿沙层积对油茶种子发芽的影响[J]. 种子, 2010, 29(8):85-88. doi:10.3969/j.issn.1001-4705.2010.08.026.]
    [21] WEN Y, SU S C, MA L Y, et al. Effects of gibberellins on flower bud formation and fruit quality in Camellia oleifera[J]. J Zhejiang Agric For Univ, 2015, 32(6):861-867.[温玥, 苏淑钗, 马履一, 等. 赤霉素处理对油茶花芽形成和果实品质的影响[J]. 浙江农林大学学报, 2015, 32(6):861-867. doi:10.11833/j.issn.2095-0756.2015.06.006.]
    [22] CAI Y, WANG D X, CHEN S C, et al. Effect of gibberellin on growth of spring shoots and flower bud differentiation in Camellia osmantha[J]. J SW For Univ, 2020, 40(4):180-184.[蔡娅, 王东雪, 陈仕昌, 等. 赤霉素对香花油茶花芽分化和春梢生长的影响[J]. 西南林业大学学报, 2020, 40(4):180-184. doi:10.11929/j.swfu.201908001.]
    [23] UEGUCHI-TANAKA M, NAKAJIMA M, KATOH E, et al. Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin[J]. Plant Cell, 2007, 19(7):2140-2155. doi:10.1105/tpc.106.043729.
    [24] BLANCO-TOURIÑÁN N, SERRANO-MISLATA A, ALABADÍ D. Regulation of DELLA proteins by post-translational modifications[J]. Plant Cell Physiol, 2020, 61(11):1891-1901. doi:10.1093/pcp/pcaa113.
    [25] QIN Q Q, WANG W, GUO X L, et al. Arabidopsis DELLA protein degradation is controlled by a type-one protein phosphatase, TOPP4[J]. PLoS Genet, 2014, 10(7):e1004464. doi:10.1371/journal.pgen.1004464.
    [26] LEE K P, PISKUREWICZ U, TUREČKOVÁ V, et al. A seed coat bedding assay shows that RGL2-dependent release of abscisic acid by the endosperm controls embryo growth in Arabidopsis dormant seeds[J]. Proc Natl Acad Sci USA, 2010, 107(44):19108-19113. doi:10. 1073/pnas.1012896107.
    [27] AN J, HOU L, LI C, et al. Cloning and expression analysis of four DELLA genes in peanut[J]. Russ J Plant Physiol, 2015, 62(1):116-126. doi:10.1134/S1021443715010021.
    [28] WALLNER E S, LÓPEZ-SALMERÓN V, GREB T. Strigolactone versus gibberellin signaling:Reemerging concepts?[J]. Planta, 2016, 243(6):1339-1350. doi:10.1007/s00425-016-2478-6.
    [29] WATERS M T, GUTJAHR C, BENNETT T, et al. Strigolactone signaling and evolution[J]. Annu Rev Plant Biol, 2017, 68:291-322. doi:10.1146/annurev-arplant-042916-040925.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

谌琦,骆梦琳,李佳玲,周会汶,张立莎,刘亚男,吴杨,朱智国.油茶DELLA基因的克隆和表达分析[J].热带亚热带植物学报,2023,31(5):634~642

复制
分享
文章指标
  • 点击次数:209
  • 下载次数: 685
  • HTML阅读次数: 632
  • 引用次数: 0
历史
  • 收稿日期:2022-05-12
  • 最后修改日期:2022-06-20
  • 录用日期:2022-09-13
  • 在线发布日期: 2023-09-26
  • 出版日期: 2023-09-20
文章二维码