岭南垛基果林湿地土壤碳组分特征
作者:
基金项目:

广东省基础与应用基础研究基金(2020A1515010493)资助


Soil Carbon Components in Typical Duoji Fruit Forest Wetland
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [43]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    岭南垛基果林湿地是珠三角地区典型的湿地类型之一,其对土壤碳汇的贡献值得关注。为探讨果林种植类型对土壤有机碳的影响,对广州垛基果林湿地内种植黄皮(Clausena lansium) (HP),龙眼(Dimocarpus longan) (LY)、杨桃(Averrhoa carambola) (YT),龙眼和黄皮间种(LH),杨桃、龙眼和黄皮间种(YLH)共5种种植类型下的表层(0~20 cm)土壤碳组分进行研究。结果表明,不同的植被类型对土壤的总有机碳(SOC)、可溶性有机碳(DOC)、微生物生物量碳(MBC)、易氧化有机碳(ROC)、惰性碳(NLC)含量都有影响,LY的SOC含量最高(22.6 g/kg),显著高于YLH (P < 0.05),且NLC含量显著高于LH和YLH (P < 0.05)。NLC含量与土壤养分呈正相关,与土壤容重呈负相关。YT的MBC含量显著高于LY、HP、LH (P < 0.05),且MBC/SOC显著高于HP、LY (P < 0.05)。YLH模式下,土壤DOC含量和DOC/SOC显著高于其他植被类型(P < 0.05)。LH的ROC/SOC显著高于HP和LY,而NLC/SOC显著低于HP和LY。岭南垛基果林湿地中单独种植龙眼和黄皮有助于提高土壤有机碳稳定性,而混合种植模式下土壤有机碳活性最高。

    Abstract:

    Lingnan Duoji Fruit Forest Wetland is a semi-natural managed wetland in Pearl River Delta, which plays an important role in soil carbon sequestration. The soil organic carbon (SOC) components in surface layer (0-20 cm) under five planting types in Duoji Fruit Forest Wetland in Guangzhou were studied, including Clausena lansium (HP), Dimocarpus longan (LY), Averrhoa carambola (YT), D. longan and C. lansium interplanting (LH), A. carambola, D. longan and C. lansium interplanting (YLH). The results showed that the fruit-forest types significantly affected the contents of SOC, dissolved organic carbon (DOC), microbial biomass carbon (MBC), readily oxidizable carbon (ROC) and non-liable carbon (NLC). The SOC content of LY was the highest (22.6 g/kg), which was significantly higher than that of YLH (P < 0.05), and the NLC content was also significant higher than LH and YLH. The NLC was positively related with soil N and P, negatively related with soil bulk density. The content of MBC in YT was higher than that in LY, HP and LH, while the MBC/SOC was higher than that in HP and LY. The DOC content and DOC/SOC in YLH were significantly higher than that of other types (P < 0.05). The ROC/SOC of LH were significantly higher than that of HP and LY, while the NL/SOC were significantly lower than that of HP and LY (P < 0.05). Therefore, it was suggested that the stability of soil organic carbon was improved by planting C. lansium and D. longan alone, while the activity of soil organic carbon was the highest under mixed planting mode.

    参考文献
    [1] VON LÜTZOW M, KÖGEL-KNABNER I, EKSCHMITT K, et al. Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions: A review[J]. Eur J Soil Sci, 2006, 57(4): 426-445. doi: 10.1111/j.1365-2389.2006.00809.x.
    [2] JANDL R, LINDNER M, VESTERDAL L, et al. How strongly can forest management influence soil carbon sequestration?[J]. Geoderma, 2007, 137(3/4): 253-268. doi: 10.1016/j.geoderma.2006.09.003.
    [3] BATJES N H. Total carbon and nitrogen in the soils of the world[J]. Eur J Soil Sci, 2014, 65(1): 10-21. doi: 10.1111/ejss.12114_2.
    [4] ZHAO F, KANG D, HAN X H, et al. Soil stoichiometry and carbon storage in long-term afforestation soil affected by understory vegetation diversity[J]. Ecol Eng, 2015, 74: 415-422. doi: 10.1016/j.ecoleng.2014.11.010.
    [5] XU X F, THORNTON P E, POST W M. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems[J]. Glob Ecol Biogeogr, 2013, 22(6): 737-749. doi: 10.1111/geb.12029.
    [6] YU J, FANG L, BIAN Z F, et al. A review of the composition of soil carbon pool[J]. Acta Ecol Sin, 2014, 34(17): 4829-4838. 余健, 房莉, 卞正富, 等. 土壤碳库构成研究进展[J]. 生态学报, 2014, 34(17): 4829-4838. doi: 10.5846/stxb201301050036.
    [7] MELERO S, LÓPEZ-GARRIDO R, MADEJÓN E, et al. Long-term effects of conservation tillage on organic fractions in two soils in southwest of Spain[J]. Agric Ecosyst Environ, 2009, 133(1/2): 68-74. doi: 10.1016/j.agee.2009.05.004.
    [8] XIAO X, ZHU W, XIAO L, et al. Suitable water and nitrogen treatment improves soil microbial biomass carbon and nitrogen and enzyme activities of paddy field[J]. Trans Chin Soc Agric Eng, 2013, 29(21): 91-98. 肖新, 朱伟, 肖靓, 等. 适宜的水氮处理提高稻基农田土壤酶活性和土壤微生物量碳氮[J]. 农业工程学报, 2013, 29(21): 91-98. doi: 10.3969/j.issn.1002-6819.2013.21.012.
    [9] SIX J, CONANT R T, PAUL E A, et al. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils[J]. Plant Soil, 2002, 241(2): 155-176.
    [10] WANG J, XIE H T, ZHU P, et al. Cannotation and modern analysis method for active soil organic matter (carbon)[J]. Chin J Ecol, 2003, 22(6): 109-112. 王晶, 解宏图, 朱平, 等. 土壤活性有机质(碳)的内涵和现代分析方法概述[J]. 生态学杂志, 2003, 22(6): 109-112. doi: 10.13292/j.1000-4890.2003.0151.
    [11] PARTON W J, SCHIMEL D S, COLE C V, et al. Analysis of factors controlling soil organic matter levels in great plains grasslands[J]. Soil Sci Soc Am J, 1987, 51(5): 1173-1179. doi: 10.2136/sssaj1987.03615995005100050015x.
    [12] ZHU H Y, WANG Z F, LU C, et al. Variation characteristics of soil active organic carbon and carbon pools under five vegetation types in Jinyun Mountain[J]. Soils, 2021, 53(2): 354-360. 朱浩宇, 王子芳, 陆畅, 等. 缙云山5种植被下土壤活性有机碳及碳库变化特征[J]. 土壤, 2021, 53(2): 354-360. doi: 10.13758/j.cnki.tr.2021.02.019.
    [13] DONG Y H, ZENG Q C, LI Y Y, et al. The characteristics of soil active organic carbon composition under different vegetation types on the Loess Plateau[J]. Acta Agrest Sin, 2015, 23(2): 277-284. 董扬红, 曾全超, 李娅芸, 等. 黄土高原不同植被类型土壤活性有机碳组分分布特征[J]. 草地学报, 2015, 23(2): 277-284. doi: 10.11733/j.issn.1007-0435.2015.02.010.
    [14] PENG S L, WANG H T, CHEN C D, et al. Distribution patterns of soil organic carbon and nitrogen storage in forestland of Baotianman Nature Reserve[J]. Res Soil Water Conserv, 2015, 22(5): 30-34. 彭舜磊, 王华太, 陈昌东, 等. 宝天曼自然保护区森林土壤碳氮储量分布格局分析[J]. 水土保持研究, 2015, 22(5): 30-34. doi: 10.13869/j.cnki.rswc.2015.05.007.
    [15] LI Z J. Effect of planting years in southern Xinjiang orchard soil nutrients and organic carbon components[D]. Urumqi: Xinjiang Agricultural University, 2016. 李志军. 种植年限对新疆南部果园土壤养分及有机碳组分的影响[D]. 乌鲁木齐: 新疆农业大学, 2016.
    [16] NAHLIK A M, FENNESSY M S. Carbon storage in US wetlands[J]. Nat Commun, 2016, 7: 13835. doi: 10.1038/ncomms13835.
    [17] YUAN X Z, FAN C X, LIN Z B, et al. Restoration of Duoji fruit forest wetland: Rebirth of agricultural cultural heritage of Lingnan Region[J]. Ecol Environ Monit Three Gorges, 2021, 6(2): 36-44. 袁兴中, 范存祥, 林志斌, 等. 垛基果林湿地恢复——岭南农业文化遗产的重生[J]. 三峡生态环境监测, 2021, 6(2): 36-44. doi: 10.19478/j.cnki.2096-2347.2021.02.05.
    [18] LU R K. Soil Agricultural Chemical Analysis Method[M]. Beijing: China Agricultural Science and Technology Press, 2000: 12-292. 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000: 12-292.
    [19] BLAIR G J, LEFROY R D B, LISLE L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems[J]. Aust J Agric Res, 1995, 46(7): 1459-1466. doi: 10.1071/AR9951459.
    [20] LIU L, YU J J, ZHOU W J. Soil active organic carbon components and organic carbon reserves under different garden plants[J]. Res Soil Water Conserv, 2020, 27(5): 38-44. 刘琳, 余佳洁, 周文静. 不同园林植物土壤活性有机碳组分及有机碳储量[J]. 水土保持研究, 2020, 27(5): 38-44. doi: 10.13869/j.cnki.rswc.2020.05.006.
    [21] WANG R J, JIANG Y, WANG Y, et al. The change of soil carbon stabilization and carbon management index in different mixed plantations of Castanopsis hystrix in subtropical area of South China[J]. For Res, 2021, 34(2): 24-31. 王仁杰, 蒋燚, 王勇, 等. 南亚热带不同红锥混交林土壤碳库稳定性与碳库管理指数变化[J]. 林业科学研究, 2021, 34(2): 24-31. doi: 10.13275/j.cnki.lykxyj.2021.02.003.
    [22] LIU N, HAN J B, ZHAO J R, et al. Soil organic carbon under typical vegetations at alpine timberline in Wutai Mountain[J]. Soils, 2019, 51(5): 970-978. 刘楠, 韩进斌, 赵建儒, 等. 五台山高山林线典型植被土壤有机碳特征[J]. 土壤, 2019, 51(5): 970-978. doi: 10.13758/j.cnki.tr.2019.05.018.
    [23] XU W W, QIAO M. Soil carbon contents in relation to soil physicochemical properties in arid regions of China[J]. J Desert Res, 2014, 34(6): 1558-1561. 徐薇薇, 乔木. 干旱区土壤有机碳含量与土壤理化性质相关分析[J]. 中国沙漠, 2014, 34(6): 1558-1561. doi: 10.7522/j.issn.1000-694X.2013.00311.
    [24] XIE J, CHANG S L, ZHANG Y T, et al. Plant and soil ecological stoichiometry with vertical zonality on the northern slope of the middle Tianshan Mountains[J]. Acta Ecol Sin, 2016, 36(14): 4363-4372. 谢锦, 常顺利, 张毓涛, 等. 天山北坡植物土壤生态化学计量特征的垂直地带性[J]. 生态学报, 2016, 36(14): 4363-4372. doi: 10.5846/stxb201506301387.
    [25] PÉREZ-ROJAS J, MORENO F, QUEVEDO J C, et al. Soil organic carbon stocks in fluvial and isolated tropical wetlands from Colombia[J]. CATENA, 2019, 179: 139-148. doi: 10.1016/j.catena.2019.04.006.
    [26] ZHAN C L, CAO J J, HAN Y M, et al. Spatial patterns, storages and sources of black carbon in soils from the catchment of Qinghai Lake, China[J]. Eur J Soil Sci, 2015, 66(3): 525-534. doi: 10.1111/ejss.12236.
    [27] HUMPHREY V, BERG A, CIAIS P, et al. Soil moisture-atmosphere feedback dominates land carbon uptake variability[J]. Nature, 2021, 592(7852): 65-69. doi: 10.1038/s41586-021-03325-5.
    [28] TANG Y X, WANG Q C, CHEN J, et al. Quantitative and structural characteristics of dissolved organic carbon in 13 tree seedling leaves and fine roots in the mid-subtropics[J]. Acta Ecol Sin, 2022, 42(12): 4882-4891. 唐玉祥, 王全成, 陈娟, 等. 中亚热带13种树种幼苗叶片和细根的可溶性有机碳的数量特征和结构特征[J]. 生态学报, 2022, 42(12): 4882-4891. doi: 10.5846/stxb202106301742.
    [29] HAO J B, QIAO F, CAI Z L. Seasonal dynamics of soil labile organic carbon and its fractions in subtropical evergreen broadleaved forest[J]. Ecol Environ Sci, 2019, 28(2): 245-251. 郝江勃, 乔枫, 蔡子良. 亚热带常绿阔叶林土壤活性有机碳组分季节动态特征[J]. 生态环境学报, 2019, 28(2): 245-251. doi: 10.16258/j.cnki.1674-5906.2019.02.004.
    [30] DEVI N B, YADAVA P S. Seasonal dynamics in soil microbial biomass C, N and P in a mixed-oak forest ecosystem of Manipur, north-east India[J]. Appl Soil Ecol, 2006, 31(3): 220-227. doi: 10.1016/j.apsoil.2005.05.005.
    [31] WANG Y, SHEN Q R, SHI R H, et al. Soil microbial biomass and its ecological effects[J]. J Nanjing Agric Univ, 1996, 19(4): 45-51. 王岩, 沈其荣, 史瑞和, 等. 土壤微生物量及其生态效应[J]. 南京农业大学学报, 1996, 19(4): 45-51.
    [32] RUAN C Q, CHEN J L, LIU B, et al. Physical/chemical properties and microbial communities in rhizospheric soil of Averrhoa carambola Linn. [J]. Fujian J Agric Sci, 2013, 28(8): 789-795. 阮传清, 陈建利, 刘波, 等. 杨桃根际土壤理化性质及微生物群落特征分析[J]. 福建农业学报, 2013, 28(8): 789-795. doi: 10.19303/j.issn.1008-0384.2013.08.013.
    [33] LI R B. Review of research advances of soil microbial biomass carbon[J]. Guangdong For Sci Technol, 2008, 24(6): 65-69. 黎荣彬. 土壤微生物生物量碳研究进展[J]. 广东林业科技, 2008, 24(6): 65-69. doi: 10.3969/j.issn.1006-4427.2008.06.014.
    [34] LI Q, CHENG X L, LUO Y Q, et al. Consistent temperature sensitivity of labile soil organic carbon mineralization along an elevation gradient in the Wuyi Mountains, China[J]. Appl Soil Ecol, 2017, 117/118: 32-37. doi: 10.1016/j.apsoil.2017.04.018.
    [35] SHEN H, CAO Z H, HU Z Y. Characteristics and ecological effects of the active organic carbon in soil[J]. Chin J Ecol, 1999, 18(3): 32-38. 沈宏, 曹志洪, 胡正义. 土壤活性有机碳的表征及其生态效应[J]. 生态学杂志, 1999, 18(3): 32-38. doi: 10.13292/j.1000-4890.1999.0038.
    [36] XU M G, YU R, SUN X F, et al. Effects of long-term fertilization on labile organic matter and carbon management index (CMI) of the typical soils of China[J]. Plant Nutr Fert Sci, 2006, 12(4): 459-465. 徐明岗, 于荣, 孙小凤, 等. 长期施肥对我国典型土壤活性有机质及碳库管理指数的影响[J]. 植物营养与肥料学报, 2006, 12(4): 459-465. doi: 10.3321/j.issn:1008-505X.2006.04.001.
    [37] WANG Y X, WENG B Q, XING S H, et al. Advance in soil organic carbon stock and the impact factors on orchard ecosystem research[J]. Fujian J Agric Sci, 2011, 26(6): 1113-1122. 王义祥, 翁伯琦, 邢世和, 等. 果园土壤有机碳及其影响因素的研究进展[J]. 福建农业学报, 2011, 26(6): 1113-1122. doi: 10.3969/j.issn.1008-0384.2011.06.036.
    [38] ZHU Z J, JIANG P K, XU Q F. Study on the active organic carbon in soil under different types of vegetation[J]. For Res, 2006, 19(4): 523-526. 朱志建, 姜培坤, 徐秋芳. 不同森林植被下土壤微生物量碳和易氧化态碳的比较[J]. 林业科学研究, 2006, 19(4): 523-526. doi: 10.3321/j.issn:1001-1498.2006.04.022.
    [39] KNORR W, PRENTICE I C, HOUSE J I, et al. Long-term sensitivity of soil carbon turnover to warming[J]. Nature, 2005, 433(7023): 298-301. doi: 10.1038/nature03226.
    [40] XI D, LI J, KUANG Y W, et al. Variation of soil non-labile carbon under different forest types in Heshan[J]. J Trop Subtrop Bot, 2013, 21 (3): 203-210. 习丹, 李炯, 旷远文, 等. 鹤山不同植被类型土壤惰性碳含量及其季节变化特征[J]. 热带亚热带植物学报, 2013, 21 (3): 203-210. doi: 10.3969/j.issn.1005-3395.2013.03.002.
    [41] ZHANG L, ZHANG D L, MAO Z J, et al. The characteristic and maintains of recalcitrant organic carbon of different communities type[J] For Eng, 2019, 35(6): 16-25. 张玲, 张东来, 毛子军, 等. 不同群落类型土壤惰性碳含量特征与维持机制[J]. 森林工程, 2019, 35(6): 16-25. doi: 10.3969/j.issn.1006-8023.2019.06.003.
    [42] ZHANG L, ZHANG D L, MAO Z J. Characteristic mineralization of soil organic carbon in different successional series of broadleaved Korean pine forests in the temperate zone in China[J]. Acta Ecol Sin, 2017, 37(19): 6370-6378. 张玲, 张东来, 毛子军. 中国温带阔叶红松林不同演替系列土壤有机碳矿化特征[J]. 生态学报, 2017, 37(19): 6370-6378. doi: 10.5846/stxb201607111415.
    [43] ZHOU G Y, XU S, PHILIPPE C, et al. Climate and litter C/N ratio constrain soil organic carbon accumulation[J]. Nation Sci Rev, 2019, 6(4): 746-757. doi: 10.1093/nsr/nwz045.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张茜莹,周庆,潘楚婷,王珊,罗晰,刘结仪,赵倩.岭南垛基果林湿地土壤碳组分特征[J].热带亚热带植物学报,2023,31(6):789~796

复制
分享
文章指标
  • 点击次数:150
  • 下载次数: 775
  • HTML阅读次数: 266
  • 引用次数: 0
历史
  • 收稿日期:2022-04-28
  • 在线发布日期: 2023-11-24
  • 出版日期: 2023-11-20
文章二维码