遮阴对地枫皮幼苗生长和生物量分配的影响
作者:
基金项目:

国家重点研发计划(2019YFC0507503);国家自然科学基金项目(32160093, 31760112);广西重点研发计划(桂科 AB21220024);广西科技基地和人才专项(桂科 AD20297049);广西科技重大专项(桂科 AA18118015);桂林科技攻关项目(20190213-2)资助


Effect of Shading on Growth and Biomass Allocation of Illicium difengpi Seedlings
Author:
Fund Project:

National Key Research and Development Program of China (Grant No. 2019YFC507503), the National Natural Science Foundation of China (Grant No. 32160093, 31760112), the Project of Guangxi Key Research and Development (Grant No. Guike AB21220024), the Special Project of Guangxi Science and Technology Base and Talent (Grant No. Guike AD20297049 ), the Project of Guangxi Major Science and Technology (Grant No. Guike AA18118015), and the Guilin Scientific Research Item (Grant No. 20190213-2)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [32]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了解光照强度对地枫皮(Illicium difengpi)幼苗生长和生物量分配的影响,对不同等级幼苗在不同遮阴处理下的形态和生物量变化进行了研究。结果表明,遮阴处理下幼苗的株高、冠宽和平均单叶面积均显著高于对照,同时比叶面积均随光强增大而显著降低。除I级苗50%遮阴处理外,全光处理下各等级幼苗的根长均显著高于遮阴处理。随着光照强度的增加,各等级幼苗的根生物量比与根冠比显著增加,叶生物量比显著减少;不同等级幼苗对强光和弱光环境均表现出较强的适应性,但以50%遮阴处理的总生物量最大,全光和85%遮阴处理均较小。遮阴处理的幼苗个体大小与其初始大小呈正相关,其中II级苗与I级苗差别较小,III级苗生长较差。在人工育苗条件下I级苗数量不到10%,较差的种苗质量叠加喀斯特山顶恶劣环境,可能是导致野外幼苗更新限制的重要原因。因此在野外回归和人工栽培过程中宜选用I、II级种苗,光强控制在透光率50%为宜。

    Abstract:

    In order to understand the effect of light intensity on the growth and biomass allocation of Illicium difengpi seedlings, the changes in morphological characteristics and biomass of seedlings at different classes were studied under different shading treatments. The results showed that the plant height, crown width and mean leaf area of seedlings under shading were significantly higher than those under control, while the specific leaf area decreased significantly with increasing of light intensity. The root length of seedlings with different classes under full light were significantly higher than those under shading, except for 50% shading of I-class seedlings. With increasing of light intensity, the root biomass ratio and root to crown ratio of seedlings at all classes increased significantly, and the leaf biomass ratio decreased significantly; seedlings at different classes showed strong adaptability to both high and low light environments, but the total biomass was the biggest under 50% shading, and smaller under full light and 85% shading. The size of seedlings under shading was positively correlated with their initial size, while the difference between II-and I-class seedlings was small, and the growth of III-class seedlings was poor. The number of I-class seedlings was less than 10% under artificial nursery conditions, and the poor seedling quality superimposed on the harsh environment of karst summits might be an important reason for the limitation of its field seedling regeneration. Therefore, it was advisable to use first and secondary seedlings in field regression and artificial cultivation, and to control the light intensity at about 50% light transmission.

    参考文献
    [1] ZHOU G, XU W Z, WAN J, et al. Seasonal dynamics of energy and nutrients of Pinus koraiensis seedlings in different succes-sional stages of broadleaved Korean pine forest in Changbai Mountain, China[J]. Chin J Appl Ecol, 2021, 32(5):1663-1672.[周光, 徐玮泽, 万静, 等. 长白山阔叶红松林不同演替阶段林下红松幼苗能量与养分季节动态[J]. 应用生态学报, 2021, 32(5):1663-1672. doi:10.13287/j.1001-9332.202105.001.]
    [2] GAO L, LI B, LIU W Y, et al. Inhibition effects of daughter ramets on parent of clonal plant Eichhornia crassipes[J]. Aquat Bot, 2013, 107:47-53. doi:10.1016/j.aquabot.2013.01.010.
    [3] CHENG J, LIU J M, WANG D, et al. Plastic response of the karst endemic plant Juglans regia L. f. luodianense seedings to light inten-sity[J]. Chin J Appl Environ Biol, 2021, 27(1):23-30.[程晶, 刘济明, 王灯, 等. 喀斯特特有植物罗甸小米核桃幼苗对光照强度的可塑性响应[J]. 应用与环境生物学报, 2021, 27(1):23-30. doi:10.19675/j. cnki.1006-687x.2020.09012.]
    [4] SONG J, LI S F, LI S F, et al. Effects of shading on photosynthesis and anatomical structure in leaves of Rhododendron[J]. Guihaia, 2019, 39(6):802-811.[宋杰, 李树发, 李世峰, 等. 遮阴对高山杜鹃叶片解剖和光合特性的影响[J]. 广西植物, 2019, 39(6):802-811. doi:10.11931/guihaia.gxzw201806031.]
    [5] XU Z Q, HUANG X R, XU C L, et al. The impacts of light conditions on the growth and morphology of Quercus mongolica seedlings[J]. Acta Ecol Sin, 2009, 29(3):1121-1128.[许中旗, 黄选瑞, 徐成立, 等. 光照条件对蒙古栎幼苗生长及形态特征的影响[J]. 生态学报, 2009, 29(3):1121-1128. doi:10.3321/j.issn:1000-0933.2009.03.008.]
    [6] GEHRING C A. Growth responses to arbuscular mycorrhizae by rain forest seedlings vary with light intensity and tree species[J]. Plant Ecol, 2003, 167(1):127-139. doi:10.1023/A:1023989610773.
    [7] URBAS P, ZOBEL K. Adaptive and inevitable morphological plasticity of three herbaceous species in a multi-species community:Field experiment with manipulated nutrients and light[J]. Acta Oecol, 2000, 21(2):139-147. doi:10.1016/S1146-609X(00)00115-6.
    [8] YANG J H, LI Y N, BU H Y, et al. Response of leaf traits of common broad-leaved woody plants to environmental factors on the eastern Qinghai-Xizang Plateau[J]. Chin J Plant Ecol, 2019, 43(10):863-876.[杨继鸿, 李亚楠, 卜海燕, 等. 青藏高原东缘常见阔叶木本植物叶片性状对环境因子的响应[J]. 植物生态学报, 2019, 43(10):863-876. doi:10.17521/cjpe.2019.0174.]
    [9] ZHANG G C, ZHANG Z M, CI D W, et al. Effects of drought and salt stress on osmotic regulator and antioxidase activities[J]. Acta Agric Boreali-Sin, 2018, 33(3):176-181.[张冠初, 张智猛, 慈敦伟, 等. 干旱和盐胁迫对花生渗透调节和抗氧化酶活性的影响[J]. 华北农学报, 2018, 33(3):176-181. doi:10.7668/hbnxb.2018.03.026.]
    [10] SUN J H, LIU B, GUO L P, et al. Significance of plant taxonomy in Chinese material medica resources:The changes of family and genus category and standardization of scientific names in Chinese Pharma-copoeia[J]. Sci Sin Vitae, 2021, 51(5):579-593.[孙嘉惠, 刘冰, 郭兰萍, 等. 植物分类学于中药资源学的意义:《中国药典》植物药材基源物种科属范畴变动考证及学名规范化研究[J]. 中国科学:生命科学, 2021, 51(5):579-593. doi:10.1360/SSV-2020-0345.]
    [11] SUN W B, YANG J, DAO Z L. Study and Conservation of Plant Species with Extremely Small Populations (PSESP) in Yunnan Province, China[M]. Beijing:Science Press, 2019:103.[孙卫邦, 杨静, 刀志灵. 云南省极小种群野生植物研究与保护[M]. 北京:科学出版社, 2019:103.]
    [12] KONG D X, LI Y Q, LIANG H L, et al. Anatomical features of vegetative organs and ecological adaptability of leaf structure of Illicium difengpi[J]. Genom Appl Biol, 2012, 31(3):282-288.[孔德鑫, 李雁群, 梁惠凌, 等. 地枫皮营养器官解剖结构特征及其叶片结构的生态适应性[J]. 基因组学与应用生物学, 2012, 31(3):282-288. doi:10.3969/gab.031.000282.]
    [13] Chinese Pharmacopoeia Commission. Pharmacopoeia of the People's Republic of China[M]. Beijing:Chinese Medical Science Press, 2010:114.[国家药典委员会. 中国药典[M]. 北京:中国医药科技出版社, 2010:114.]
    [14] HAN Y, WEI X, TANG H, et al. Effects of soil moisture on seed germination and early seedling growth of Illicicum difengpi[J]. Seed, 2018, 37(7):10-15.[韩愈, 韦霄, 唐辉, 等. 土壤水分对地枫皮种子萌发与早期幼苗生长的影响[J]. 种子, 2018, 37(7):10-15. doi:10. 16590/j.cnki.1001-4705.2018.07.010.]
    [15] WANG M L, KONG D X, ZOU R, et al. Effect of different soil conditions on the growth and biomass allocation of Illicium difengpi K. I. B. et K. I. M seedlings[J]. Crops, 2013(3):67-71.[王满莲, 孔德鑫, 邹蓉, 等. 不同土壤环境对地枫皮幼苗生长和生物量分配的影响[J]. 作物杂志, 2013(3):67-71. doi:10.16035/j.issn.1001-7283.2013. 03.019.]
    [16] YANG F D, LUO W R, CUI Z J, et al. Codonopsis pilosula seedlings grading standards[J]. Lishizhen Med Mat Med Res, 2017, 28(2):452-454.[杨扶德, 罗文蓉, 崔治家, 等. 白条党参种苗的等级划分标准研究[J]. 时珍国医国药, 2017, 28(2):452-454.]
    [17] ZHU H J. Study on the key technique of Carya illinoensis contain-nerized seedling[D]. Nanjing:Nanjing Forestry University, 2016.[朱海军. 薄壳山核桃容器苗培育关键技术研究[D]. 南京:南京林业大学, 2016.]
    [18] LI P, ZHUANG Q Y. Diurnal changes of photosynthetic characteristics of 3 giant Alcantarea exposure to summer sunlight and their relation-ship with environmental factors[J]. Chin J Trop Crops, 2021, 42(9):2579-2586.[李萍, 庄秋怡. 夏季全光照下3种大型卷瓣凤梨属植物光合日变化特征及与环境因子的关系[J]. 热带作物学报, 2021, 42(9):2579-2586. doi:10.3969/j.issn.1000-2561.2021.09.019.]
    [19] WANG J, KUANG S B, ZHOU P, et al. Agronomic and quality traits of two-year-old Panax notoginseng response to environmental light intensity[J]. J Trop Subtrop Bot, 2018, 26(4):375-382.[王静, 匡双便, 周平, 等. 二年生三七农艺和质量性状对环境光强的响应特征[J]. 热带亚热带植物学报, 2018, 26(4):375-382. doi:10.11926/jtsb.3844.]
    [20] ZHANG Y Y, YU T, MA W B, et al. Physiological and morphological effects of different canopy densities on reintroduced Acer catalpifolium[J]. Biodiv Sci, 2020, 28(3):323-332.[张宇阳, 于涛, 马文宝, 等. 不同郁闭度对野外回归的梓叶槭幼树形态和生理特征的影响[J]. 生物多样性, 2020, 28(3):323-332. doi:10.17520/biods.2019190.]
    [21] WANG M L, WEI X, TANG H, et al. Effects of light intensity on growth and photosynthesis of three karst plant seedlings[J]. Chin J Ecol, 2015, 34(3):604-610.[王满莲, 韦霄, 唐辉, 等. 光强对三种喀斯特植物幼苗生长和光合特性的影响[J]. 生态学杂志, 2015, 34(3):604-610. doi:10.13292/j.1000-4890.2015.0083.]
    [22] ZHANG J Z, ZHANG Q Y, SUN G F, et al. Effects of drought stress and re-watering on growth and photosynthesis of Hosta[J]. Acta Pratacul Sin, 2014, 23(1):167-176.[张金政, 张起源, 孙国峰, 等. 干旱胁迫及复水对玉簪生长和光合作用的影响[J]. 草业学报, 2014, 23(1):167-176. doi:10.11686/cyxb20140120.]
    [23] SIGEE D C, BAHRAMI F, ESTRADA B, et al. The influence of phosphorus availability on carbon allocation and P quota in Scene-desmus subspicatus:A synchrotron-based FTIR analysis[J]. Phycologia, 2007, 46(5):583-592. doi:10.2216/07-14.1.
    [24] VERDÚ M, TRAVESET A. Early emergence enhances plant fitness:A phylogenetically controlled meta-analysis[J]. Ecology, 2005, 86(6):1385-1394. doi:10.1890/04-1647.
    [25] WEINER J. Allocation, plasticity and allometry in plants[J]. Perspect Plant Ecol Evol Syst, 2004, 6(4):207-215. doi:10.1078/1433-8319-00083.
    [26] ZUO Y L, WANG Z M, XI X Q, et al. Plant biomass allocation strategies of the dominant species in an alpine meadow of northwestern Sichuan, China[J]. Chin J Appl Environ Biol, 2018, 24(6):1195-1203.[左有璐, 王振孟, 习新强, 等. 川西北高寒草甸优势植物生物量分配对策[J]. 应用与环境生物学报, 2018, 24(6):1195-1203. doi:10. 19675/j.cnki.1006-687x.2018.03030.]
    [27] POLLOCK L J, MORRIS W K, VESK P A. The role of functional traits in species distributions revealed through a hierarchical model[J]. Ecography, 2012, 35(8):716-725. doi:10.1111/j.1600-0587.2011.07085.x.
    [28] XUE Q, CHEN B, YANG X M, et al. Biomass allocation, water use characteristics, and photosynthetic light response of four Commeli-naceae plants under different light intensities[J]. Acta Pratacul Sin, 2022, 31(1):69−80.[薛晴, 陈斌, 杨小梅, 等. 不同光强下4种鸭跖草科植物的生物量分配、水分生理及光响应特征[J]. 草业学报, 2022, 31(1):69−80. doi:10.11686/cyxb2021250.]
    [29] LIU B R, LIAO B W. The physio-ecological response of Acanthus ilicifolius seedlings to different degrees of light intensity in tide environment[J]. For Res, 2013, 26(2):192-199.[刘滨尔, 廖宝文. 老鼠簕幼苗在潮汐环境下对不同光强的生理生态响应[J]. 林业科学研究, 2013, 26(2):192-199. doi:10.13275/j.cnki.lykxyj.2013.02.013.]
    [30] TAN S J, LI T, YU S R, et al. Effects of light intensity on growth and biomass allocation of seedlings of the eight mangrove species[J]. Ecol Sci, 2020, 39(3):139-146.[谭淑娟, 李婷, 余素睿, 等. 光照强度对8种红树植物幼苗生长和生物量分配的影响[J]. 生态科学, 2020, 39(3):139-146. doi:10.14108/j.cnki.1008-8873.2020.03.019.]
    [31] TANG H, SHI Y C, KONG D X, et al. Investigation on the wild germplasm resources and geographical distribution of Illicium difengpi, a limestone endemic plant[J]. Guangdong Agric Sci, 2011, 38(12):113-117.[唐辉, 史艳财, 孔德鑫, 等. 岩溶特有植物地枫皮的种质资源调查及地理分布[J]. 广东农业科学, 2011, 38(12):113-117. doi:10.16768/j.issn.1004-874x.2011.12.048.]
    [32] LIU C, TIAN T, LI S, et al. Growth response of Chinese woody plant seedlings to different light intensities[J]. Acta Ecol Sin, 2018, 38(2):518-527.[刘从, 田甜, 李珊, 等. 中国木本植物幼苗生长对光照强度的响应[J]. 生态学报, 2018, 38(2):518-527. doi:10.5846/stxb201611012221.]
    引证文献
引用本文

王琳,王满莲,梁惠凌,吴超,刘宝玉,唐辉.遮阴对地枫皮幼苗生长和生物量分配的影响[J].热带亚热带植物学报,2023,31(5):607~614

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-04-15
  • 最后修改日期:2022-07-07
  • 录用日期:2022-07-27
  • 在线发布日期: 2023-09-26
  • 出版日期: 2023-09-20
文章二维码