海南热带雨林特有兰科植物华石斛潜在适宜生境预测
作者:
基金项目:

国家自然科学基金项目(32160400); 海南省自然科学基金青年基金项目(322QN229)资助


Prediction of Potential Suitable Habitat of Dendrobium sinense, an Endemic Orchid Species in Hainan Tropical Rainforest
Author:
  • NING Yao

    NING Yao

    Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plant, Ministry of Education, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan, Forestry College of Hainan University, Haikou 570228, China;Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, Guangxi, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHANG Qiuxia

    CHANG Qiuxia

    Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plant, Ministry of Education, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan, Forestry College of Hainan University, Haikou 570228, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Zhe

    ZHANG Zhe

    Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plant, Ministry of Education, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan, Forestry College of Hainan University, Haikou 570228, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHAO Ying

    ZHAO Ying

    Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plant, Ministry of Education, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan, Forestry College of Hainan University, Haikou 570228, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [45]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为探明华石斛(Dendrobium sinense)潜在适宜分布范围,运用地理信息系统GIS技术和MaxEnt模型,基于25个野外调查的分布数据,以气候变量和地形变量为环境预测因子,对华石斛当前及未来时期的适宜生境进行预测。结果表明,华石斛在海南岛内的潜在适宜生境面积约为403.4 km2,占海南岛总面积的1.1%,主要分布于海南热带雨林国家公园霸王岭分局、鹦哥岭分局、尖峰岭分局、吊罗山分局以及五指山分局管辖区域,零星分布于黎母山分局管辖区、五指山市南部、琼中县、万宁市、保亭县和三亚市等地。华石斛适宜分布区域极其狭窄,适宜生境斑块化,呈现较为严重的破碎化。海拔、降水量季节性变异系数、最湿季降水量及最暖月最高温是影响华石斛种群分布格局的主要环境因子,华石斛的最适宜生境条件为海拔1 070~1 600 m,降水量季节性变异系数0.80~0.88,最湿季降水量1 700~2 266 mm,最暖月最高温18 ℃~25 ℃。相比于当前,2050年在RCP4.5、RCP8.5气候情景下,华石斛的潜在适宜生境分别减少19.1%和19.5%,2070年减少19.7%和19.8%。预测模型的3个评估指标(AUC=0.997±0.003,Kappa系数=0.990±0.03,TSS=0.990±0.03)表明该模型具有较好的预测能力。目前华石斛种群主要分布于海南热带雨林国家公园内,需加强就地保护,同时兼顾对其附生宿主树的保护;猕猴岭东北部及南部、鹦哥岭南部存在大片非常适宜和高度适宜生境,可作为华石斛未知种群调查的重点区域。

    Abstract:

    To explore the potential suitable distribution range of Dendrobium sinense, its current and future suitable habitat based on the distribution data of 25 field surveys, with climate variables and topographic variables as environmental predictors were predicted by using GIS technology and MaxEnt model. The results showed that the potential suitable habitat area of D. sinense in Hainan Island was approximately 403.4 km2, accounting for 1.1% of the total area of Hainan Island. It was mainly distributed in the jurisdiction of Bawangling Branch, Yinggeling Branch, Jianfengling Branch, Diaoluoshan Branch and Wuzhishan Branch of Hainan Tropical Rainforest National Park, with scattered distribution in the jurisdiction of Limushan Branch, the southern part of Wuzhishan City, Qiongzhong County, Wanning City, Baoting County, and Sanya City. The suitable distribution area of D. sinense was extremely narrow, and the suitable habitat was patchy, showing more serious fragmentation. Altitude, coefficient of variation of precipitation seasonality, precipitation in the wettest quarter and maximum temperature in the warmest month were the main environment factors affecting the population distribution pattern of D. sinense. The most suitable habitat for D. sinense was at an altitude of 1 070-1 600 m, with the coefficient of variation of precipitation seasonality of 0.80-0.88, precipitation in the wettest quarter of 1 700-2 266 mm, and the maximum temperature of 18 ℃-25 ℃ in the warmest month. Compared with the current, the potential suitable habitat under RCP4.5 and RCP8.5 climate scenarios of D. sinense decreased by 19.1% and 19.5% in 2050, and 19.7% and 19.8% in 2070, respectively. From three evaluation indexes (AUC=0.997±0.003, Kappa coefficient= 0.990±0.03, TSS=0.990±0.03), the prediction model had good prediction ability. At present, Dendrobium sinense populations are mainly distributed in Hainan Tropical Rainforest National Park, so it is necessary to strengthen in situ conservation and epiphytic host tree protection. There are large areas of highly suitable habitat in the northeast and south of Mihouling, as well as south of Yinggeling, making them as focus region for investigating unknown D. sinense populations.

    参考文献
    [1] CECCARELLI S, GRANDO S. Evolutionary plant breeding as a response to the complexity of climate change[J]. iScience, 2020, 23 (12): 101815. doi: 10.1016/j.isci.2020.101815.
    [2] BELLARD C, BERTELSMEIER C, LEADLEY P, et al. Impacts of climate change on the future of biodiversity[J]. Ecol Lett, 2012, 15(4): 365-377. doi: 10.1111/j.1461-0248.2011.01736.x.
    [3] WALTHER G R, POST E, CONVEY P, et al. Ecological responses to recent climate change[J]. Nature, 2002, 416(6879): 389-395. doi: 10.1038/416389a.
    [4] NIEDER J, LA MESA G, VACCHI M. Blenniidae along the Italian coasts of the Ligurian and the Tyrrhenian Sea: Community structure and new records of Scartella cristata for northern Italy[J]. Cybium Int J Ichthyol, 2000, 24(4): 359-369.
    [5] WALTHER G R. Climatic forcing on the dispersal of exotic species[J]. Phytocoenologia, 2000, 30(3/4): 409-430. doi: 10.1127/phyto/30/2000/409.
    [6] ERASMUS B F N, VAN JAARSVELD A S, CHOWN S L, et al. Vulnerability of South African animal taxa to climate change[J]. Glob Change Biol, 2002, 8(7): 679-693. doi: 10.1046/j.1365-2486.2002.00502.x.
    [7] LI G Q, LIU C C, LIU Y G, et al. Advances in theoretical issues of species distribution models[J]. Acta Ecol Sin, 2013, 33(16): 4827-4835. 李国庆, 刘长成, 刘玉国, 等. 物种分布模型理论研究进展[J]. 生态学报, 2013, 33(16): 4827-4835. doi: 10.5846/stxb201212031735.
    [8] PHILLIPS S J, ANDERSON R P, SCHAPIRE R E. Maximum entropy modeling of species geographic distributions[J]. Ecol Modell, 2006, 190(3/4): 231-259. doi: 10.1016/j.ecolmodel.2005.03.026.
    [9] O'HANLEY J R. NeuralEnsembles: A neural network based ensemble forecasting program for habitat and bioclimatic suitability analysis[J]. Ecography, 2009, 32(1): 89-93. doi: 10.1111/j.1600-0587.2008.05601.x.
    [10] TABOR K, WILLIAMS J W. Globally downscaled climate projections for assessing the conservation impacts of climate change[J]. Ecol Appl, 2010, 20(2): 554-565. doi: 10.1890/09-0173.1.
    [11] FALK W, MELLERT K H. Species distribution models as a tool for forest management planning under climate change: Risk evaluation of Abies alba in Bavaria[J]. J Veget Sci, 2011, 22(4): 621-634. doi: 10.1111/j.1654-1103.2011.01294.x.
    [12] BERTRAND R, PEREZ V, GÉGOUT J C. Disregarding the edaphic dimension in species distribution models leads to the omission of crucial spatial information under climate change: The case of Quercus pubescens in France[J]. Glob Change Biol, 2012, 18(8): 2648-2660. doi: 10.1111/j.1365-2486.2012.02679.x.
    [13] CRIMMINS S M, DOBROWSKI S Z, MYNSBERGE A R, et al. Can fire atlas data improve species distribution model projections?[J]. Ecol Appl, 2016, 24(5): 1057-1069. doi: 10.1890/13-0924.1.
    [14] ZENG Q, ZHANG Y M, SUN G Q, et al. Using species distribution model to estimate the wintering population size of the endangered scaly-sided merganser in China[J]. PLoS One, 2015, 10(2): e0117307. doi: 10.1371/journal.pone.0117307.
    [15] AUSTIN M P, VAN NIEL K P. Improving species distribution models for climate change studies: Variable selection and scale[J]. J Biogeogr, 2011, 38(1): 1-8. doi: 10.1111/j.1365-2699.2010.02416.x.
    [16] HAO Q, DE LAFONTAINE G, GUO D S, et al. The critical role of local refugia in postglacial colonization of Chinese pine: Joint inferences from DNA analyses, pollen records, and species distribution modeling[J]. Ecography, 2018, 41(4): 592-606, doi: 10.1111/ecog.03096.
    [17] KUMAR S, STOHLGREN T J. Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia[J]. J Ecol Nat Environ, 2009, 1: 94-98.
    [18] HERNANDEZ P A, GRAHAM C H, MASTER L L, et al. The effect of sample size and species characteristics on performance of different species distribution modeling methods[J]. Ecography, 2006, 29(5): 773-785. doi: 10.1111/j.0906-7590.2006.04700.x.
    [19] MEROW C, SMITH M J, SILANDER J A. A practical guide to MaxEnt for modeling species' distributions: What it does, and why inputs and settings matter[J]. Ecography, 2013, 36(15): 1058-1069. doi: 10.1111/j.1600-0587.2013.07872.x.
    [20] DEB C R, JAMIR N S, KIKON Z P. Distribution prediction model of a rare orchid species (Vanda bicolor Griff.) using small sample size[J]. Am J Plant Sci, 2017, 8(6): 1388-1398. doi: 10.4236/ajps.2017.86094.
    [21] LIU Q L, LI Y, FANG S Z. MaxEnt model-based identification of potential Cyclocarya paliurus cultivation regions[J]. J Nanjing For Univ (Nat Sci), 2017, 41(4): 25-29. 刘清亮, 李垚, 方升佐. 基于MaxEnt模型的青钱柳潜在适宜栽培区预测[J]. 南京林业大学学报(自然科学版), 2017, 41(4): 25-29. doi: 10.3969/j.issn.1000-2006.201608010.
    [22] MA S M, NIE Y B, GENG Q L, et al. Impact of climate change on suitable distribution range and spatial pattern in Amygdalus mongolica[J]. Chin J Plant Ecol, 2014, 38(3): 262-269. 马松梅, 聂迎彬, 耿庆龙, 等. 气候变化对蒙古扁桃适宜分布范围和空间格局的影响[J]. 植物生态学报, 2014, 38(3): 262-269. doi: 10.3724/SP.J.1258.2014.00023.
    [23] NING Y, LEI J R, SONG X Q, et al. Modeling the potential suitable habitat of Impatiens hainanensis, a limestone-endemic plant[J]. Chin J Plant Ecol, 2018, 42(9): 946-954. 宁瑶, 雷金睿, 宋希强, 等. 石灰岩特有植物海南凤仙花潜在适宜生境分布模拟[J]. 植物生态学报, 2018, 42(9): 946-954. doi: 10.17521/cjpe.2018.0066.
    [24] SONG X Q. Study on germplasm resources of wild plants of Dendrobium in Hainan and conservation biology of Dendrobium[D]. Beijing: Beijing Forestry University, 2005. 宋希强. 海南石斛属野生植物种质资源及华石斛保育生物学研究[D]. 北京: 北京林业大学, 2005.
    [25] YANG F S. Conservation biology of endangered orchid Dendrobium sinense based on endomycorrhizal fungi[D]. Haikou: Hainan University, 2009. 杨福孙. 濒危兰科植物华石斛基于内生菌根真菌的保育生物学[D]. 海口: 海南大学, 2009.
    [26] WU S Y, MENG Q W, SONG X Q, et al. Effects of high temperature stress on the morphological and physiological parameters of Dendrobium sinense seedlings[J]. Chin J Trop Crops, 2017, 38(4): 646-651. 吴姝漪, 孟千万, 宋希强, 等. 高温胁迫对华石斛幼苗的形态和生理参数的影响[J]. 热带作物学报, 2017, 38(4): 646-651. doi: 10.3969/j.issn.1000-2561.2017.04.010.
    [27] YAO X J, SONG X Q, YANG F S. Selection and optimization of matrix for seedlings of Dendrobium sinense in vitro[J]. Chin J Trop Crops, 2020, 41(11): 2226-2231. 姚肖健, 宋希强, 杨福孙. 华石斛组培苗炼苗基质的筛选与优化[J]. 热带作物学报, 2020, 41(11): 2226-2231. doi: 10.3969/j.issn.1000-2561.2020.11.011.
    [28] WANG X M. Micorrhiza biology of Dendrobium sinense (Orchidaceae), an endemic species in Hainan Island[D]. Haikou: Hainan University, 2017. 王晓鸣. 海南特有种华石斛菌根生物学研究[D]. 海口: 海南大学, 2017.
    [29] CAI X L. Islation, identification and anti-microbial activities of endophytes from Dendrobium sinens in Hainan[D]. Haikou: Hainan University, 2017. 柴晓蕾. 华石斛内生菌分离鉴定及拮抗菌株的筛选[D]. 海口: 海南大学, 2017.
    [30] WU H Z. Population ecology of Dendrobium sinense (Orchidaceae), an endemic species to Hainan Island[D]. Haikou: Hainan University, 2013. 武华周. 华石斛种群生态学研究[D]. 海口: 海南大学, 2013.
    [31] WANG T X, QI S J, SONG X Q, et al. Correlation analysis between population dynamics and reproduction strategies in Dendrobium sinense (Orchidaceae), an endemic orchid in Hainan Island[J]. J Trop Biol, 2018, 9(2): 189-197. 王童欣, 戚山江, 宋希强, 等. 华石斛种群动态与繁殖策略的相关性分析[J]. 热带生物学报, 2018, 9(2): 189-197. doi: 10.15886/j.cnki.rdswxb.2018.02.010.
    [32] ZHENG Y K, HU X Y, SONG X Q, et al. Optimized extraction method for genomic DNA from Dendrobium species (Orchidaceae)[J]. J Trop Biol, 2015, 6(2): 168-172. 郑云柯, 胡翔宇, 宋希强, 等. 石斛属植物基因组DNA提取方法的对比[J]. 热带生物学报, 2015, 6(2): 168-172. doi: 10.15886/j.cnki.rdswxb.2015.02.011.
    [33] BIAN Z X, YAN C Y, YAO X J, et al. Determination of seed viability in endangered orchid of Dendrobium sinense[J]. Chin J Trop Crops, 2017, 38(3): 403-407. 边子星, 颜彩燕, 姚肖健, 等. 濒危华石斛种子活力测定方法研究[J]. 热带作物学报, 2017, 38(3): 403-407. doi: 10.3969/j.issn.1000-2561.2017.03.003.
    [34] CAI C H, TAN C Y, CHEN H Q, et al. Chemical constituents from Dendrobium sinense (Ⅱ)[J]. Guihaia, 2020, 40(9): 1368-1374. 蔡彩虹, 谭彩银, 陈惠琴, 等. 华石斛化学成分研究(Ⅱ)[J]. 广西植物, 2020, 40(9): 1368-1374. doi: 10.11931/guihaia.gxzw201907003.
    [35] QI S J. Reproduction strategy of Dendrobium sinense (Orchidaceae), a species endemic to Hainan Island[D]. Haikou: Hainan University, 2017. 戚山江. 海南特有种华石斛繁殖策略研究[D]. 海口: 海南大学, 2017.
    [36] AGUIRRE-GUTIÉRREZ J, CARVALHEIRO L G, POLCE C, et al. Fitfor-purpose: Species distribution model performance depends on evaluation criteria dutch hoverflies as a case study[J]. PLoS One, 2013, 8(5): e63708. doi: 10.1371/journal.pone.0063708.
    [37] JOPPA L N, MCINERNY G, HARPER R, et al. Troubling trends in scientific software use[J]. Science, 2013, 340(6134): 814-815. doi: 10.1126/science.1231535.
    [38] LÜ F N. Studies on the potential suitable distribution areas and constituents of the invasive plamt Solanum rostratum [D]. Shenyang: Shenyang Agricultural University, 2020. 吕飞南. 外来入侵植物刺萼龙葵潜在分布区预测及化学成分研究[D]. 沈阳: 沈阳农业大学, 2020.
    [39] YANG Q. Predict by SVM and grade division of wild plant species with extremely small populations' reintroduction area in Hainan Island[D]. Haikou: Hainan University, 2014. 杨琦. 海南岛极小种群野生植物种群重建区的SVM预测和等级划分[D]. 海口: 海南大学, 2014.
    [40] LI Y J, QI S J, SONG X Q, et al. Clonal growth characteristic of epiphytic orchid Dendrobium sinense[J]. Mol Plant Breed, 2021, 19 (20): 6927-6932. 李奕佳, 戚山江, 宋希强, 等. 附生兰科植物华石斛的克隆生长特性[J]. 分子植物育种, 2021, 19(20): 6927-6932. doi: 10.13271/j.mpb.019.006927.
    [41] SONG L, LIU W Y. Epiphytic plants: Their responses to global change and roles in bioindication[J]. Chin J Ecol, 2011, 30(1): 145-154. 宋亮, 刘文耀. 附生植物对全球变化的响应及其生物指示作用[J]. 生态学杂志, 2011, 30(1): 145-154. doi: 10.13292/j.1000-4890.2011.0016.
    [42] BENAVIDES A M. Distribution and succession of vascular epiphytes in Colombian Amazonia[D]. Amsterdam: University of Amsterdam, 2010.
    [43] HSU R C C, TAMIS W L M, RAES N, et al. Simulating climate change impacts on forests and associated vascular epiphytes in a subtropical island of East Asia[J]. Diver Distribut, 2012, 18(4): 334-347. doi: 10.1111/j.1472-4642.2011.00819.x.
    [44] LEHMANN A, OVERTON J M, LEATHWICK J R. GRASP: Generalized regression analysis and spatial prediction[J]. Ecol Modell, 2003, 157(2/3): 165-183. doi: 10.1016/S0304-3800(02)00354-X.
    [45] PRESTON K L, ROTENBERRY J T, REDAK R A, et al. Habitat shifts of endangered species under altered climate conditions: Importance of biotic interactions[J]. Glob Change Biol, 2008, 14(11): 2501-2515. doi: 10.1111/j.1365-2486.2008.01671.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

宁瑶,昌秋霞,张哲,赵莹.海南热带雨林特有兰科植物华石斛潜在适宜生境预测[J].热带亚热带植物学报,2023,31(6):779~788

复制
分享
文章指标
  • 点击次数:198
  • 下载次数: 602
  • HTML阅读次数: 412
  • 引用次数: 0
历史
  • 收稿日期:2022-04-02
  • 在线发布日期: 2023-11-24
  • 出版日期: 2023-11-20
文章二维码