谷类作物β-葡聚糖合成酶基因家族的研究进展
作者:
基金项目:

国家自然科学基金项目(32070359);广东省自然科学基金面上项目(2021A1515012410);科学技术部高端外国专家引进计划(G2021030013);中国科学院华南植物园海外知名学者项目(No.Y861041001)资助


Research Progress of β-Glucan Synthase Gene Families in Cereal Crops
Author:
  • YUAN Hongyu

    YUAN Hongyu

    Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;South China National Botanical Garden, Guangzhou 510650, China;University of Chinese Academy of Sciences, Beijing 100049, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CUI Dongli

    CUI Dongli

    Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;South China National Botanical Garden, Guangzhou 510650, China;University of Chinese Academy of Sciences, Beijing 100049, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • John Seymour Heslop HARRISON

    John Seymour Heslop HARRISON

    Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;South China National Botanical Garden, Guangzhou 510650, China;Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Qing

    LIU Qing

    Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;South China National Botanical Garden, Guangzhou 510650, China;Center for Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [78]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    Beta-葡聚糖是由β-(1,3)和β-(1,4)糖苷键连接的非纤维素多糖,主要分布在谷类作物籽粒胚乳及糊粉层中,在高尔基体合成,经由囊泡运输到质膜,最终在细胞壁上沉积。通过增加胆汁酸排泄,延迟葡萄糖吸收,β-葡聚糖可有效降低胆固醇及血糖水平。Beta-葡聚糖合成酶基因家族成员最早在水稻(Oryza sativa)中得到鉴定,后在其他作物中陆续被发现。该基因家族包括3个主要成员:CslFCslHCslJ亚基因家族,起源于不同分支,经过趋同演化,执行合成β-葡聚糖的功能。Beta-葡聚糖基因家族成员均受到负选择压力,演化过程中序列高度保守。CslF亚家族基因成员相对较多,常在染色体上形成基因簇,CslF6是介导β-葡聚糖合成的主效基因。CslF亚家族在叶基部等幼嫩组织中表达水平相对较高,且明显受到光照强度的影响;CslHCslJ亚家族成员较少,其中CslH亚家族在叶尖等成熟组织中的表达水平高,而CslJ亚家族在籽粒中有较高的表达水平。该文综述了β-葡聚糖合成酶基因家族成员的系统发育关系、表达模式,β-葡聚糖合成酶的亚细胞定位,以及作物中的定向育种研究进展,提出β-葡聚糖合成酶基因家族在染色体上的精准定位是未来的研究趋势,以期推动染色体工程在作物β-葡聚糖定向育种中的应用。

    Abstract:

    Beta-glucan is a noncellulosic polysaccharide linked by β-(1,3) and β-(1,4) glycosidic bonds, mainly distributed in the endosperm and aleurone layer of cereal crop grains with the synthesis in the Golgi apparatus, transportation to the plasma membrane by vesicles, and deposition in the cell wall. Beta-glucan is effective in reducing cholesterol and blood sugar levels by increasing bile acid excretion and delaying glucose absorption. Members of the β-glucan synthase gene families were firstly identified in rice (Oryza sativa), and subsequently discovered in other cereal crops. There are three main subfamilies (CslF, CslH and CslJ) in β-glucan synthase with the formation via convergent evolution. These three subfamilies originated from different clades and evolved their respective functions independently. During evolution, the purifying selection pressure resulted in the high conservation of sequences for members of β-glucan synthase gene families. CslF subfamily members are relatively large and often form gene clusters on chromosomes, and CslF6 is the key gene mediating β-glucan synthesis. CslF subfamily members showed the relatively high expression levels in young tissues such as leaf bases, and they were affected by light intensity obviously. There are relatively few members in CslH and CslJ subfamilies, CslH genes presented the relatively high expression levels in mature tissues such as leaf tips, while CslJ genes showed the relatively high expression levels in young one like grains. The research progress on the phylogenetic relationships for members of β-glucan synthase gene families, the subcellular localization of β-glucan synthase, and the directional breeding in cereal crops were summarized. The accurate localization of β-glucan synthase genes on chromosomes is prospected for the future research. The review aims to promote the directionally breeding of cereal crops with high β-glucan content by the chromosome engineering.

    参考文献
    [1] SHEWRY P R, WAN Y F, HAWKESFORD M J, et al. Spatial distri-bution of functional components in the starchy endosperm of wheat grains[J]. J Cereal Sci, 2020, 91:102869. doi:10.1016/j.jcs.2019. 102869.
    [2] STINARD P S, NEVINS D J. Distribution of noncellulosic β-d-glucans in grasses and other monocots[J]. Phytochemistry, 1980, 19(7):1467-1468. doi:10.1016/0031-9422(80)80196-8.
    [3] NIRMALA PRASADI P V, JOYE I J. Dietary fibre from whole grains and their benefits on metabolic health[J]. Nutrients, 2020, 12(10):3045. doi:10.3390/nu12103045.
    [4] SHVACHKO N A, LOSKUTOV I G, SEMILET T V, et al. Bioactive components in oat and barley grain as a promising breeding trend for functional food production[J]. Molecules, 2021, 26(8):2260. doi:10. 3390/molecules26082260.
    [5] HAZEN S P, SCOTT-CRAIG J S, WALTON J D. Cellulose synthase-like genes of rice[J]. Plant Physiol, 2002, 128(2):336-340. doi:10. 1104/pp.010875.
    [6] BURTON R A, WILSON S M, HRMOVA M, et al. Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1,3;1,4)-β-d-glucans[J]. Science, 2006, 311(5769):1940-1942. doi:10.1126/science.1122975.
    [7] LITTLE A, SCHWERDT J G, SHIRLEY N J, et al. Revised phylogeny of the Cellulose synthase gene superfamily:Insights into cell wall evolution[J]. Plant Physiol, 2018, 177(3):1124-1141. doi:10.1104/pp.17.01718.
    [8] STAUDTE R G, WOODWARD J R, FINCHER G B, et al. Water-soluble (1→3),(1→4)-β-d-glucans from barley (Hordeum vulgare) endosperm:III. Distribution of cellotriosyl and cellotetraosyl residues[J]. Carbohydr Polym, 1983, 3(4):299-312. doi:10.1016/0144-8617(83)90027-9.
    [9] MIKKELSEN M S, JESPERSEN B M, LARSEN F H, et al. Molecular structure of large-scale extracted β-glucan from barley and oat:Identification of a significantly changed block structure in a high β-glucan barley mutant[J]. Food Chem, 2013, 136(1):130-138. doi:10.1016/j.foodchem.2012.07.097.
    [10] MCFARLANE H E, DÖRING A, PERSSON S. The cell biology of cellulose synthesis[J]. Annu Rev Plant Biol, 2014, 65:69-94. doi:10. 1146/annurev-arplant-050213-040240.
    [11] BULONE V, SCHWERDT J G, FINCHER G B. Co-evolution of enzymes involved in plant cell wall metabolism in the grasses[J]. Front Plant Sci, 2019, 10:1009. doi:10.3389/fpls.2019.01009.
    [12] CHANG S C, SALDIVAR R K, LIANG P H, et al. Structures, biosynthesis, and physiological functions of (1,3;1,4)-β-d-glucans[J]. Cells, 2021, 10(3):510. doi:10.3390/cells10030510.
    [13] LAZARIDOU A, BILIADERIS C G. Molecular aspects of cereal β-glucan functionality:Physical properties, technological applications and physiological effects[J]. J Cereal Sci, 2007, 46(2):101-118. doi:10.1016/j.jcs.2007.05.003.
    [14] KIM H J, WHITE P J. Impact of the molecular weight, viscosity, and solubility of β-glucan on in vitro oat starch digestibility[J]. J Agric Food Chem, 2013, 61(13):3270-3277. doi:10.1021/jf305348j.
    [15] KIEMLE S N, ZHANG X, ESKER A R, et al. Role of (1,3)(1,4)-β-glucan in cell walls:Interaction with cellulose[J]. Biomacromolecules, 2014, 15(5):1727-1736. doi:10.1021/bm5001247.
    [16] BAIN M, VAN DE MEENE A, COSTA R, et al. Characterisation of cellulose synthase like F6(CslF6) mutants shows altered carbon metabolism in β-d-(1,3;1,4)-glucan deficient grain in Brachypodium distachyon[J]. Front Plant Sci, 2021, 11:602850. doi:10.3389/fpls. 2020.602850.
    [17] MORRALL P, BRIGGS D E. Changes in cell wall polysaccharides of germinating barley grains[J]. Phytochemistry, 1978, 17(9):1495-1502. doi:10.1016/S0031-9422(00)94628-4.
    [18] BURTON R A, COLLINS H M, KIBBLE N A J, et al. Over-expression of specific HvCslF cellulose synthase-like genes in transgenic barley increases the levels of cell wall (1,3;1,4)-β-d-glucans and alters their fine structure[J]. Plant Biotechnol J, 2011, 9(2):117-135. doi:10. 1111/j.1467-7652.2010.00532.x.
    [19] BURTON R A, FINCHER G B. Current challenges in cell wall biology in the cereals and grasses[J]. Front Plant Sci, 2012, 3:130. doi:10. 3389/fpls.2012.00130.
    [20] SCHUSTER J, BENINCÁ G, VITORAZZI R, et al. Effects of oats on lipid profile, insulin resistance and weight loss[J]. Nutr Hosp, 2015, 32(5):2111-2116. doi:10.3305/nh.2015.32.5.9590.
    [21] YANG C J, CHEN M S, DAI T T, et al. Research advances in func-tional properties and application of oat β-glucan[J]. J Chin Inst Food Sci Technol, 2021, 21(6):301-311.[杨成峻, 陈明舜, 戴涛涛, 等. 燕麦β-葡聚糖功能与应用研究进展[J]. 中国食品学报, 2021, 21(6):301-311. doi:10.16429/j.1009-7848.2021.06.036.]
    [22] JOYCE S A, KAMIL A, FLEIGE L, et al. The cholesterol-lowering effect of oats and oat beta glucan:Modes of action and potential role of bile acids and the microbiome[J]. Front Nutr, 2019, 6:171. doi:10. 3389/fnut.2019.00171.
    [23] PAN W, HAO S S, ZHENG M X, et al. Oat-derived β-glucans induced trained immunity through metabolic reprogramming[J]. Inflammation, 2020, 43(4):1323-1336. doi:10.1007/s10753-020-01211-2.
    [24] CHEN O, MAH E, DIOUM E, et al. The role of oat nutrients in the immune system:A narrative review[J]. Nutrients, 2021, 13(4):1048. doi:10.3390/nu13041048.
    [25] CHANG H C, HUANG C N, YEH D M, et al. Oat prevents obesity and abdominal fat distribution, and improves liver function in humans[J]. Plant Foods Hum Nutr, 2013, 68(1):18-23. doi:10.1007/s11130-013-0336-2.
    [26] ZHU F M, DU B, XU B J. A critical review on production and industrial applications of beta-glucans[J]. Food Hydrocoll, 2016, 52:275-288. doi:10.1016/j.foodhyd.2015.07.003.
    [27] FU H, WU D, BING X, et al. Study on the skin care effect of oat β-glucan extracted by bidirectional fermentation[J]. China Surfactant Deterg Cosmet, 2021, 51(4):324-330.[付豪, 吴迪, 邴雪, 等. 双向发酵提取燕麦β-葡聚糖的护肤功效研究[J]. 日用化学工业, 2021, 51(4):324-330. doi:10.3969/j.issn.1001-1803.2021.04.010.]
    [28] RIBEIRO D M L, CARVALHO JÚNIOR A R, VALE DE MACEDO G H R, et al. Polysaccharide-based formulations for healing of skin-related wound infections:Lessons from animal models and clinical trials[J]. Biomolecules, 2019, 10(1):63. doi:10.3390/biom 10010063.
    [29] GUPTA M, ABU-GHANNAM N, GALLAGHAR E. Barley for brewing:Characteristic changes during malting, brewing and applications of its by-products[J]. Compr Rev Food Sci Food Saf, 2010, 9(3):318-328. doi:10.1111/j.1541-4337.2010.00112.x.
    [30] BRENNAN C S, CLEARY L J. The potential use of cereal (1→3;1→4)-β-d-glucans as functional food ingredients[J]. J Cereal Sci, 2005, 42(1):1-13. doi:10.1016/j.jcs.2005.01.002.
    [31] RICHMOND T A, SOMERVILLE C R. The cellulose synthase super-family[J]. Plant Physiol, 2000, 124(2):495-498. doi:10.1104/pp.124. 2.495.
    [32] BURTON R A, JOBLING S A, HARVEY A J, et al. The genetics and transcriptional profiles of the cellulose synthase-like HvCslF gene family in barley[J]. Plant Physiol, 2008, 146(4):1821-1833. doi:10.1104/pp.107.114694.
    [33] SCHREIBER M, WRIGHT F, MACKENZIE K, et al. The barley genome sequence assembly reveals three additional members of the CslF (1,3;1,4)-β-glucan synthase gene family[J]. PLoS One, 2014, 9(3):e90888. doi:10.1371/journal.pone.0090888.
    [34] DOBLIN M S, PETTOLINO F A, WILSON S M, et al. A barley cellulose synthase-like CslH gene mediates (1,3;1,4)-beta-d-glucan synthesis in transgenic Arabidopsis[J]. Proc Natl Acad Sci USA, 2009, 106(14):5996-6001. doi:10.1073/pnas.0902019106.
    [35] WU B, ZHANG Z W. Cloning and analysis of β-glucan synthase gene AsCSLH in Avena sativa L.[J]. Acta Agron Sin, 2011, 37(4):723-728.[吴斌, 张宗文. 燕麦葡聚糖合酶基因AsCSLH的克隆及特征分析[J]. 作物学报, 2011, 37(4):723-728. doi:10.3724/SP.J.1006.2011. 00723.]
    [36] FARROKHI N, BURTON R A, BROWNFIELD L, et al. Plant cell wall biosynthesis:Genetic, biochemical and functional genomics approaches to the identification of key genes[J]. Plant Biotechnol J, 2006, 4(2):145-167. doi:10.1111/j.1467-7652.2005.00169.x.
    [37] YIN Y B, HUANG J L, XU Y. The cellulose synthase superfamily in fully sequenced plants and algae[J]. BMC Plant Biol, 2009, 9(1):99. doi:10.1186/1471-2229-9-99.
    [38] NEWELL M A, ASORO F G, SCOTT M P, et al. Genome-wide association study for oat (Avena sativa L.) beta-glucan concentration using germplasm of worldwide origin[J]. Theor Appl Genet, 2012, 125(8):1687-1696. doi:10.1007/s00122-012-1945-0.
    [39] ZHANG J, YAN L, LIU M X, et al. Analysis of β-d-glucan bio-synthetic genes in oat reveals glucan synthesis regulation by light[J]. Ann Bot, 2021, 127(3):371-380. doi:10.1093/aob/mcaa185.
    [40] TAKETA S, YUO T, TONOOKA T, et al. Functional characterization of barley betaglucanless mutants demonstrates a unique role for CslF6 in (1,3;1,4)-β-d-glucan biosynthesis[J]. J Exp Bot, 2012, 63(1):381-392. doi:10.1093/jxb/err285.
    [41] GARCIA-GIMENEZ G, BARAKATE A, SMITH P, et al. Targeted mutation of barley (1,3;1,4)-β-glucan synthases reveals complex relationships between the storage and cell wall polysaccharide content[J]. Plant J, 2020, 104(4):1009-1022. doi:10.1111/tpj.14977.
    [42] LIM W L, COLLINS H M, SINGH R R, et al. Method for hull-less barley transformation and manipulation of grain mixed-linkage beta-glucan[J]. J Integr Plant Biol, 2018, 60(5):382-396. doi:10.1111/jipb.12625.
    [43] GIBEAUT D M, PAULY M, BACIC A, et al. Changes in cell wall polysaccharides in developing barley (Hordeum vulgare) coleoptiles[J]. Planta, 2005, 221(5):729-738. doi:10.1007/s00425-005-1481-0.
    [44] NEMETH C, FREEMAN J, JONES H D, et al. Down-regulation of the CSLF6 gene results in decreased (1,3;1,4)-β-d-glucan in endosperm of wheat[J]. Plant Physiol, 2010, 152(3):1209-1218. doi:10.1104/pp. 109.151712.
    [45] VEGA-SÁNCHEZ M E, VERHERTBRUGGEN Y, CHRISTENSEN U, et al. Loss of cellulose synthase-like F6 function affects mixed-linkage glucan deposition, cell wall mechanical properties, and defense responses in vegetative tissues of rice[J]. Plant Physiol, 2012, 159(1):56-69. doi:10.1104/pp.112.195495.
    [46] MARCOTULI I, COLASUONNO P, BLANCO A, et al. Expression analysis of cellulose synthase-like genes in durum wheat[J]. Sci Rep, 2018, 8(1):15675. doi:10.1038/s41598-018-34013-6.
    [47] SCHWERDT J G, MACKENZIE K, WRIGHT F, et al. Evolutionary dynamics of the cellulose synthase gene superfamily in grasses[J]. Plant Physiol, 2015, 168(3):968-983. doi:10.1104/pp.15.00140.
    [48] WANG L Q, GUO K, LI Y, et al. Expression profiling and integrative analysis of the CESA/CSL superfamily in rice[J]. BMC Plant Biol, 2010, 10(1):282. doi:10.1186/1471-2229-10-282.
    [49] LITTLE A, LAHNSTEIN J, JEFFERY D W, et al. A novel (1,4)-β-linked glucoxylan is synthesized by members of the cellulose synthase-like F gene family in land plants[J]. ACS Cent Sci, 2019, 5(1):73-84. doi:10.1021/acscentsci.8b00568.
    [50] ERMAWAR R A, COLLINS H M, BYRT C S, et al. Distribution, structure and biosynthetic gene families of (1,3;1,4)-β-glucan in Sorghum bicolor[J]. J Integr Plant Biol, 2015, 57(4):429-445. doi:10. 1111/jipb.12338.
    [51] ERMAWAR R A, COLLINS H M, BYRT C S, et al. Genetics and physiology of cell wall polysaccharides in the model C4 grass, Setaria viridis spp[J]. BMC Plant Biol, 2015, 15(1):236. doi:10.1186/s 12870-015-0624-0.
    [52] CHRISTENSEN U, ALONSO-SIMON A, SCHELLER H V, et al. Characterization of the primary cell walls of seedlings of Brachy-podium distachyon:A potential model plant for temperate grasses[J]. Phytochemistry, 2010, 71(1):62-69. doi:10.1016/j.phytochem.2009. 09.019.
    [53] ZHANG G B, GE C X, XU P P, et al. The reference genome of Miscanthus floridulus illuminates the evolution of Saccharinae[J]. Nat Plants, 2021, 7(5):608-618. doi:10.1038/s41477-021-00908-y.
    [54] VAN ERP H, WALTON J D. Regulation of the cellulose synthase-like gene family by light in the maize mesocotyl[J]. Planta, 2009, 229(4):885-897. doi:10.1007/s00425-008-0881-3.
    [55] DARAS G, TEMPLALEXIS D, AVGERI F, et al. Updating insights into the catalytic domain properties of plant cellulose synthase (CesA) and cellulose synthase-like (Csl) proteins[J]. Molecules, 2021, 26(14):4335. doi:10.3390/molecules26144335.
    [56] KIM S J, ZEMELIS S, KEEGSTRA K, et al. The cytoplasmic locali-zation of the catalytic site of CSLF6 supports a channeling model for the biosynthesis of mixed-linkage glucan[J]. Plant J, 2015, 81(4):537-547. doi:10.1111/tpj.12748.
    [57] FINCHER G B. Revolutionary times in our understanding of cell wall biosynthesis and remodeling in the grasses[J]. Plant Physiol, 2009, 149(1):27-37. doi:10.1104/pp.108.130096.
    [58] SCHELLER H V, ULVSKOV P. Hemicelluloses[J]. Annu Rev Plant Biol, 2010, 61:263-289. doi:10.1146/annurev-arplant-042809-112315.
    [59] ATMODJO M A, HAO Z Y, MOHNEN D. Evolving views of pectin biosynthesis[J]. Annu Rev Plant Biol, 2013, 64:747-779. doi:10. 1146/annurev-arplant-042811-105534.
    [60] GIBEAUT D M, CARPITA N C. Synthesis of (1→3),(1→4)-beta-d-glucan in the golgi apparatus of maize coleoptiles[J]. Proc Natl Acad Sci USA, 1993, 90(9):3850-3854. doi:10.1073/pnas.90.9.3850.
    [61] URBANOWICZ B R, RAYON C, CARPITA N C. Topology of the maize mixed linkage (1→3),(1→4)-β-d-glucan synthase at the golgi membrane[J]. Plant Physiol, 2004, 134(2):758-768. doi:10.1104/pp. 103.032011.
    [62] MEIKLE P J, HOOGENRAAD N J, BONIG I, et al. A (1→3,1→4)-β-glucan-specific monoclonal antibody and its use in the quantitation and immunocytochemical location of (1→3,1→4)-β-glucans[J]. Plant J, 1994, 5(1):1-9. doi:10.1046/j.1365-313x. 1994.5010001.x.
    [63] PHILIPPE S, SAULNIER L, GUILLON F. Arabinoxylan and (1→3), (1→4)-β-glucan deposition in cell walls during wheat endosperm development[J]. Planta, 2006, 224(2):449-461. doi:10.1007/s00425-005-0209-5.
    [64] WILSON S M, BURTON R A, DOBLIN M S, et al. Temporal and spatial appearance of wall polysaccharides during cellularization of barley (Hordeum vulgare) endosperm[J]. Planta, 2006, 224(3):655-667. doi:10.1007/s00425-006-0244-x.
    [65] CARPITA N C, MCCANN M C. The maize mixed-linkage (1→3), (1→4)-β-d-glucan polysaccharide is synthesized at the golgi membrane[J]. Plant Physiol, 2010, 153(3):1362-1371. doi:10.1104/pp.110. 156158.
    [66] WILSON S M, HO Y Y, LAMPUGNANI E R, et al. Determining the subcellular location of synthesis and assembly of the cell wall polysaccharide (1,3;1,4)-β-d-glucan in grasses[J]. Plant Cell, 2015, 27(3):754-771. doi:10.1105/tpc.114.135970.
    [67] KIM S J, ZEMELIS-DURFEE S, JENSEN J K, et al. In the grass species Brachypodium distachyon, the production of mixed-linkage (1,3;1,4)-β-glucan (MLG) occurs in the golgi apparatus[J]. Plant J, 2018, 93(6):1062-1075. doi:10.1111/tpj.13830.
    [68] JOBLING S A. Membrane pore architecture of the CslF6 protein controls (1-3,1-4)-β-glucan structure[J]. Sci Adv, 2015, 1(5):e1500069. doi:10.1126/sciadv.1500069.
    [69] DIMITROFF G, LITTLE A, LAHNSTEIN J, et al. (1,3;1,4)-β-glucan biosynthesis by the CSLF6 enzyme:Position and flexibility of catalytic residues influence product fine structure[J]. Biochemistry, 2016, 55(13):2054-2061. doi:10.1021/acs.biochem.5b01384.
    [70] YANG X Y, SU H D, ZHANG M Z, et al. Polyploidization and domestication[J]. Sci Sin Vitae, 2021, 51(10):1457-1466.[杨学勇, 苏汉东, 张梦卓, 等. 多倍化和驯化研究进展与展望[J]. 中国科学:生命科学, 2021, 51(10):1457-1466. doi:10.1360/SSV-2021-0220.]
    [71] RAKSZEGI M, MOLNÁR I, LOVEGROVE A, et al. Addition of Aegilops U and M chromosomes affects protein and dietary fiber content of wholemeal wheat flour[J]. Front Plant Sci, 2017, 8:1529. doi:10.3389/fpls.2017.01529.
    [72] DANILOVA T V, FRIEBE B, GILL B S, et al. Development of a complete set of wheat-barley group-7 robertsonian translocation chro-mosomes conferring an increased content of β-glucan[J]. Theor Appl Genet, 2018, 131(2):377-388. doi:10.1007/s00122-017-3008-z.
    [73] DANILOVA T V, POLAND J, FRIEBE B. Production of a complete set of wheat-barley group-7 chromosome recombinants with increased grain β-glucan content[J]. Theor Appl Genet, 2019, 132(11):3129-3141. doi:10.1007/s00122-019-03411-3.
    [74] FOGARTY M C, SMITH S M, SHERIDAN J L, et al. Identification of mixed linkage β-glucan quantitative trait loci and evaluation of AsCslF6 homoeologs in hexaploid oat[J]. Crop Sci, 2020, 60(2):914-933. doi:10.1002/csc2.20015.
    [75] TANG X Q. Determination of β-glucan content and CSLH gene cloning among Avena species[D]. Ya'an:Sichuan Agricultural University, 2014.[唐雪琴. 燕麦属物种β-葡聚糖含量测定及CSLH基因克隆[D]. 雅安:四川农业大学, 2014.]
    [76] MARCOTULI I, COLASUONNO P, CUTILLO S, et al. β-glucan content in a panel of Triticum and Aegilops genotypes[J]. Genet Resour Crop Evol, 2019, 66(4):897-907. doi:10.1007/s10722-019-00753-1.
    [77] GARCIA-GIMENEZ G, RUSSELL J, AUBERT M K, et al. Barley grain (1,3;1,4)-β-glucan content:Effects of transcript and sequence variation in genes encoding the corresponding synthase and endohy-drolase enzymes[J]. Sci Rep, 2019, 9(1):17250. doi:10.1038/s41598-019-53798-8.
    [78] DOEHLERT D C, MCMULLEN M S, HAMMOND J J. Genotypic and environmental effects on grain yield and quality of oat grown in North Dakota[J]. Crop Sci, 2001, 41(4):1066-1072. doi:10.2135/cropsci2001.4141066x.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

袁泓宇,崔冬丽,John Seymour Heslop HARRISON,刘青.谷类作物β-葡聚糖合成酶基因家族的研究进展[J].热带亚热带植物学报,2023,31(2):295~304

复制
分享
文章指标
  • 点击次数:464
  • 下载次数: 637
  • HTML阅读次数: 496
  • 引用次数: 0
历史
  • 收稿日期:2022-03-30
  • 最后修改日期:2022-05-08
  • 在线发布日期: 2023-03-31
  • 出版日期: 2023-03-20
文章二维码