不同生境自交植物黄花大苞姜生殖分配的研究
作者:
基金项目:

国家自然科学基金项目(30770376, 30570116); 广东省自然科学基金重点项目(7117864)资助


Research on Reproductive Allocation of Selfing Plant Caulokaempferia coenobialis in Different Habitats
Author:
Fund Project:

the National Natural Science Foundation of China (Grant No. 30770376, 30570116), and the Key Project of the Natural Science Foundation of Guangdong Province of China (Grant No. 7117864)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [45]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了探讨自交植物黄花大苞姜(Caulokaempferia coenobialis)对石壁附生这一特殊生境的生态适应,对其不同物候期和不同生境的生殖分配进行了对比研究。结果表明,在生殖生长过程中,黄花大苞姜种群用于营养生长的生物量分配占有绝对优势,而用于生殖的生物量分配比例较小(<13%)。在黄花大苞姜各构件的生物量分配中,根茎和叶的比重较大(24.22%~43.25%)。在光线较弱生境中的种群,为了提高资源获取能力,黄花大苞姜分配到叶的比重明显高于光线较强的种群,而分配给根茎的比例却明显低于光线较强的种群。随着物候期的推移,黄花大苞姜生殖分配的比例不断增加,到果期达到最大值。不同种群间和年度间黄花大苞姜分配给生殖构件的比例没有显著差异,推测其生殖分配可能受遗传因素控制。个体大小与根茎生物量呈极显著线性函数同速生长,而与生殖分配在云天海种群没有表现出相关性,在上坪和天堂顶种群表现为同速生长关系,但决定系数小于40%。因此,黄花大苞姜能有效调节其在不同生境的生物量分配以适应石壁附生的特殊生境,在光线较弱的种群提高叶的生物量分配并降低根茎的生物量分配以提高资源的获取能力。整体上投资到营养构件的生物量占比高达87%以上,生殖构件在居群间和年度间均保持稳定。这种繁殖策略,一方面较高的营养构件投资可以获得更多的资源,另一方面稳定的生殖投资可以保证种群的延续,各构件相互协调以更好适应石壁这一资源匮乏的生境。

    Abstract:

    To explore the ecological adaptation of selfing plant Caulokaempferia coenobialis to the special habitat, hanging on rock walls, the reproductive allocation in different phenological stages and different habitats was studied. The results showed that in the process of reproductive growth, the biomass allocation for vegetative growth of C. coenobialis was overwhelmingly high, while the biomass allocation for reproduction was relatively small (less than 13%). Of all the modules, the biomass allocation of rhizomes and leaves accounted for the larger proportion (24.22%-43.25%). In population with weak light, the biomass allocation to leaves was significantly higher than that of population with strong light to obtain more resources, while the biomass allocation to rhizomes was significantly lower than that of population with strong light. With the phenological phase, the reproductive allocation of C. coenobialis increased and reached the maximum at the fruiting stage. There was no significant difference in biomass allocation to reproductive components among different populations and different years, suggesting that the reproduction allocation of C. coenobialis might be controlled by heredity factors. Individual size and rhizomes biomass significantly increased with linear function of isogony growth, while there was no significant correlation between plant size and reproductive allocation in YTH population, and they followed the low of isogony growth in SP and TTD populations, but the coefficient of determination was less than 40%. Therefore, Caulokaempferia coenobialis could effectively adjust its biomass allocation in different habitats to adapt to the special habitat of rock wall epiphytes, and increase the biomass allocation of leaves and reduce the biomass allocation of rhizomes to improve resource acquisition ability in populations with weak light. As a whole, the biomass invested in vegetative components accounted for more than 87%, and that in reproductive components remained stable between populations and years. In this reproductive strategy, on the one hand, higher investment in vegetative components can obtain more resources; on the other hand, stable investment in reproductive component can benefit generation of the population. The coordination between each module can better adapt to the resource-poor habitat of rock walls.

    参考文献
    [1] ROFF D A, FAIRBAIRN D J. The evolution of trade-offs:Where are we?[J]. J Evol Biol, 2007, 20(2):433-447. doi:10.1111/j.1420-9101. 2006.01255.x.
    [2] PÉREZ-MARTÍNEZ E, MÉNDEZ M. Reproductive allocation in plants:a reappraisal of the currency issue[J]. Nord J Bot, 2021, 39(6). doi:10.1111/njb.03034.
    [3] SU Z X, ZHONG Z C. Studies on the reproductive ecology of Gordonia acuminata population:Ⅱ. The patterns of reproductive allocation on the biomass in the population[J]. Acta Ecol Sin, 1998, 18(4):379-385.[苏智先, 钟章成. 四川大头茶种群生殖生态学研究:Ⅱ. 种群生物量生殖配置格局研究[J]. 生态学报, 1998, 18(4):379-385.]
    [4] CAO G X, XIE D T, ZHONG Z C, et al. Reproductive allocation of plant population[J]. J Sichuan For Sci Technol, 2003, 24(2):25-29.[操国兴, 谢德体, 钟章成, 等. 植物种群的生殖分配[J]. 四川林业科技, 2003, 24(2):25-29. doi:10.3969/j.issn.1003-5508.2003.02.006.]
    [5] WENK E H, FALSTER D S. Quantifying and understanding repro-ductive allocation schedules in plants[J]. Ecol Evol, 2015, 5(23):5521-5538. doi:10.1002/ece3.1802.
    [6] LIU Z J, DU G Z, CHEN J K. Size-dependent reproductive allocation of Ligularia virgaurea in different habitats[J]. Acta Phytoecol Sin, 2002, 26(1):44-50.[刘左军, 杜国祯, 陈家宽. 不同生境下黄帚橐吾(Ligularia virgaurea)个体大小依赖的繁殖分配[J]. 植物生态学报, 2002, 26(1):44-50.]
    [7] SONG Y Y, YANG Y F. Module structures and the growth analysis of Achnatherum sibiricum clones in forest margin grassland in the Songnen Plain, China[J]. Acta Pratac Sin, 2019, 28(7):168-174.[宋月媛, 杨允菲. 松嫩平原林缘草地羽茅无性系构件结构与生长分析[J]. 草业学报, 2019, 28(7):168-171. doi:10.11686/cyxb2018396.]
    [8] LIU Y J, LI Z Q. Effects of water addition on reproductive allocation of dominant plant species in Inner Mongolia steppe[J]. Front Plant Sci, 2020, 11:555743. doi:10.3389/fpls.2020.555743.
    [9] LI Z M, LIU J S, WU J F, et al. Effects of nitrogen deposition on grassland plant reproduction strategies[J]. Chin J Grassland, 2021, 43(7):106-114.[李梓萌, 刘鞠善, 吴金凤, 等. 氮沉降对草地植物生殖策略的影响[J]. 中国草地学报, 2021, 43(7):106-114. doi:10. 16742/jz.gcdxb.20200382.]
    [10] XU L, YU M H, DING G D, et al. Soil biocrusts reduce seed germination and contribute to the decline in Artemisia ordosica Krasch. shrub populations in the Mu Us Sandy Land of north China[J]. Glob Ecol Conserv, 2021, 26:e01467. doi:10.1016/j.gecco.2021.e01467.
    [11] LI G Q, ZHAO P P, SHAO W S, et al. Effect of enclosure on repro-ductive allocation of wheatgrass Agropyron mongolicum populations in desert steppes[J]. Ecol Evol, 2019, 9(24):14023-14030. doi:10.1002/ece3.5839.
    [12] YIN C L, ZHAO J C, HU J L, et al. Phenotypic variation of a potential food crop, Agriophyllum squarrosum, impacted by environmental heterogeneity[J]. Sci Sin Vitae, 2016, 46(11):1324-1335.[尹成亮, 赵杰才, 胡进玲, 等. 环境异质性对潜在粮食作物沙米表型变异的影响[J]. 中国科学:生命科学, 2016, 46(11):1324-1335. doi:10.1360/N052015-00294.]
    [13] SUN F, ZHONG Z C. Reproductive allocation in Gordonia acuminata in subtropical evergreen broad-leaved forest and analysis of its adap-tation using gray rational degree[J]. Acta Phytoecol Sin, 1997, 21(1):44-52.[孙凡, 钟章成. 四川大头茶繁殖分配及其环境适应性的关联度研究[J]. 植物生态学报, 1997, 21(1):44-52.]
    [14] WANG D, GAN X H, ZHANG X M, et al. Reproductive allocation in each DBH class for Tetracentron sinense Oliv. at individual modules level[J]. For Res, 2017, 30(4):667-673.[王东, 甘小洪, 张雪梅, 等. 水青树不同径级个体构件水平上的生殖配置研究[J]. 林业科学研究, 2017, 30(4):667-673. doi:10.13275/j.cnki.lykxyj.2017.04.019.]
    [15] LI L, BARRETT S C H, SONG Z P, et al. Sex-specific plasticity of reproductive allocation in response to water depth in a clonal, dioe-cious macrophyte[J]. Am J Bot, 2019, 106(1):42-50. doi:10.1002/ajb2.1218.
    [16] LI L, DING M M, LAN Z C, et al. Light availability and patterns of allocation to reproductive and vegetative biomass in the sexes of the dioecious macrophyte Vallisneria spinulosa[J]. Front Plant Sci, 2019, 10:572. doi:10.3389/fpls.2019.00572.
    [17] LI L, BONSER S P, LAN Z C, et al. Water depth affects reproductive allocation and reproductive allometry in the submerged macrophyte Vallisneria natans[J]. Sci Rep, 2017, 7(1):16842. doi:10.1038/s41598-017-16719-1.
    [18] GUO W, DENG W, YAN X F, et al. Research advances on impact factors of plant reproductive allocation[J]. J NE Agric Univ, 2010, 41(9):150-156.[郭伟, 邓巍, 燕雪飞, 等. 植物生殖分配影响因素的研究进展[J]. 东北农业大学学报, 2010, 41(9):150-156. doi:10. 19720/j.cnki.issn.1005-9369.2010.09.028.]
    [19] HAO Z, KUANG Y W, KANG M. Untangling the influence of phylo-geny, soil and climate on leaf element concentrations in a biodiversity hotspot[J]. Funct Ecol, 2015, 29(2):165-176. doi:10.1111/1365-2435. 12344.
    [20] NIE Y P, CHEN H S, WANG K L, et al. Seasonal water use patterns of woody species growing on the continuous dolostone outcrops and nearby thin soils in subtropical China[J]. Plant Soil, 2011, 341(1/2):399-412. doi:10.1007/s11104-010-0653-2.
    [21] WANG Y Q, ZHANG D X, RENNER S S, et al. A new self-pollination mechanism[J]. Nature, 2004, 431(7004):39-40. doi:10.1038/431039b.
    [22] KLINKHAMER P G L, MEELIS E, DE JONG T J, et al. On the analysis of size-dependent reproductive output in plants[J]. Funct Ecol, 1992, 6(3):308-316. doi:10.2307/2389522.
    [23] LI L, WANG Y F, GOU W X, et al. Response of resource allocation of Saussurea leontodontoides during its fruiting stage to the elevation[J]. Chin J Plant Ecol, 2020, 44(11):1164-1171.[李蕾, 王一峰, 苟文霞, 等. 狮牙草状风毛菊果期资源分配对海拔的响应[J]. 植物生态学报, 2020, 44(11):1164-1171. doi:10.17521/cjpe.2020.0201.]
    [24] LIU Z C, LIU H F, ZHAO D, et al. Influence of altitude and difference of different-sized individuals on reproductive allocation in Salsola affinis C. A. Mey. and Salsola nitraria Pall[J]. Acta Ecol Sin, 2015, 35(18):5957-5965.[刘尊驰, 刘华峰, 赵丹, 等. 紫翅猪毛菜、钠猪毛菜不同个体大小繁殖分配差异及随海拔的变化[J]. 生态学报, 2015, 35(18):5957-5965. doi:10.5846/stxb201401150116.]
    [25] LU X J, LIU F Y, GAO C J, et al. Gender differences in biomass allocation of reproductive twigs of Dodonaea viscosa in the Dry-hot Valley of Jinsha river[J]. Acta Bot Boreali-Occid Sin, 2018, 38(9):1733-1739.[卢雪佳, 刘方炎, 高成杰, 等. 金沙江干热河谷车桑子生殖枝生物量分配的性别差异[J]. 西北植物学报, 2018, 38(9):1733-1739. doi:10.7606/j.issn.1000-4025.2018.09.1733.]
    [26] REEKIE E G. An explanation for size-dependent reproductive allo-cation in Plantago major[J]. Can J Bot, 1998, 76(1):43-50. doi:10. 1139/b97-160.
    [27] LI Q H, XIN Z M, GAO T T, et al. Reproductive allocation in four desert species of the genus Nitraria L.[J]. Acta Ecol Sin, 2012, 32(16):5054-5061.[李清河, 辛智鸣, 高婷婷, 等. 荒漠植物白刺属4个物种的生殖分配比较[J]. 生态学报, 2012, 32(16):5054-5061. doi:10. 5846/stxb 201111221782.]
    [28] WANG X, CHEN J, XU R, et al. Preliminary study of reproductive allocation in Cistanche deserticola[J]. China J Chin Mat Med, 2011, 36(4):409-413.[王霞, 陈君, 徐荣, 等. 宁夏地区肉苁蓉人工栽培居群生殖分配规律的初步研究[J]. 中国中药杂志, 2011, 36(4):409-413. doi:10.4268/cjcmm20110406.]
    [29] YANG Y J, WANG Y F, QI R L, et al. Discrepancy caused by various altitudes in both floral traits and reproductive allocation of Saussurea tangutica[J]. Guihaia, 2018, 38(2):159-168.[杨亚军, 王一峰, 祁如林, 等. 唐古特雪莲花部特征及生殖分配的海拔差异[J]. 广西植物, 2018, 38(2):159-168. doi:10.11931/guihaia.gxzw201707007.]
    [30] ZHOU X L, JIANG H, XI L Q, et al. Research on reproductive module and reproductive allocation of swainsonine[Sphaerophysa salsula (Pall) DC.] in different phenological stages[J]. J Tarim Univ, 2013, 25(4):57-63.[周小玲, 蒋慧, 席琳乔, 等. 不同物候期苦马豆生殖构件及生殖分配的研究[J]. 塔里木大学学报, 2013, 25(4):57-63. doi:10. 3969/j.issn.1009-0568.2013.04.011.]
    [31] ZHOU X L, MA X E, SHANG K W, et al. Research on reproductive allocation of biomass and nutrients in different phenological stages of Glycyrrhiza inflata[J]. Acta Pratac Sin, 2012, 21(4):25-32.[周小玲, 马新娥, 尚可为, 等. 不同物候期胀果甘草生物量和营养物质生殖分配研究[J]. 草业学报, 2012, 21(4):25-32.]
    [32] WANG P C, YI J, HAN Z L, et al. Patterns of reproductive biomass allocation of the Ceratoides arborescens population[J]. J Arid Land Res Environ, 2008, 22(12):174-179.[王普昶, 易津, 韩智龙, 等. 华北驼绒藜种群生殖分配格局的研究[J]. 干旱区资源与环境, 2008, 22(12):174-179.]
    [33] HONG L, LIU M J, SHEN H, et al. Reproductive allocation of biomass in Mikania micrantha populations from two Habitats[J]. J Wuhan Bot Res, 2010, 28(5):598-605.[洪岚, 刘梦佼, 沈浩, 等. 两种生境中薇甘菊种群的生物量生殖分配[J]. 武汉植物学研究, 2010, 28(5):598-605. doi:10.3724/SP.J.1142.2010.50598.]
    [34] CHEN J S, SU Z X. Reproductive allocation of biomass in Pinus massoniana at MT. Jinyun[J]. Acta Phytoecol Sin, 2001, 25(6):704-708.[陈劲松, 苏智先. 缙云山马尾松种群生物量生殖配置研究[J]. 植物生态学报, 2001, 25(6):704-708.]
    [35] ZHANG J. Study on reproductive biology of Taraxacum species in northeast China[D]. Shenyang:Shenyang Agricultural University, 2013.[张建. 蒲公英属植物繁殖生物学研究[D]. 沈阳:沈阳农业大学, 2013.]
    [36] XING F, GUO J X, WANG K. Study on the demography of repro-ductive modulars and reproductive allocation of a Stellera chamae-jasme population[J]. Acta Pratac Sin, 2005, 14(4):111-115.[邢福, 郭继勋, 王珂. 狼毒种群生殖构件数量特征与生殖配置研究[J]. 草业学报, 2005, 14(4):111-115. doi:10.3321/j.issn:1004-5759.2005.04. 018.]
    [37] ZHANG W, YANG X R, JIANAER A H, et al. Biomass allocation among components of compound leaves of Fraxinus sogdiana in Yili River Reaches, Xinjiang[J]. Arid Zone Res, 2016, 33(1):114-119.[张维, 杨晓绒, 贾娜尔·阿汗, 等. 新疆伊犁河岸小叶白蜡复叶构件生物量分配[J]. 干旱区研究, 2016, 33(1):114-119. doi:10.13866/j.azr. 2016.01.14.]
    [38] WEI C Q, TANG S C, LIU M C, et al. Study on reproductive allocation of Eupatorium odoratum population in Karst mountain in Pingguo County of Guangxi[J]. Weed Sci, 2011, 29(4):20-23.[韦春强, 唐赛春, 刘明超, 等. 广西平果县岩溶石山飞机草种群的生殖配置研究[J]. 杂草科学, 2011, 29(4):20-23. doi:10.3969/j.issn.1003-935X. 2011.04.006.]
    [39] NIU J W, LEI Z L, ZHOU H K, et al. Reproductive allocation of Ely-mus nutans under different planting densities and nitrogen fertilizing treatments[J]. Pratac Sci, 2014, 31(7):1343-1351.[牛建伟, 雷占兰, 周华坤, 等. 种植密度和施氮水平对垂穗披碱草生物量分配的影响[J]. 草业科学, 2014, 31(7):1343-1351. doi:10.11829/j.issn.1001-0629. 2014-0089.]
    [40] CAO G X, ZHONG Z C, XIE D T, et al. The relationship between reproductive allocation, fruit set and individual size of Camellia rosthorniana in different communities[J]. Acta Phytoecol Sin, 2005, 29(3):361-366.[操国兴, 钟章成, 谢德体, 等. 不同群落中川鄂连蕊茶的生殖分配与个体大小之间关系的探讨[J]. 植物生态学报, 2005, 29(3):361-366. doi:10.17521/cjpe.2005.0047.]
    [41] HARPER J L. Population Biology of Plants[M]. London:Academic Press, 1977:1-892.
    [42] ACKERLY D D, JASIEŃSKI M. Size-dependent variation of gender in high density stands of the monoecious annual, Ambrosia artemisiifolia (Asteraceae)[J]. Oecologia, 1990, 82(4):474-477. doi:10.1007/BF 00319788.
    [43] SHARMA N, KOUL A, KAUL V. Pattern of resource allocation of six Plantago species with different breeding systems[J]. J Plant Res, 1999, 112(1):1-5. doi:10.1007/PL00013850.
    [44] WILSON A M, THOMPSON K. A comparative study of reproductive allocation in 40 British grasses[J]. Funct Ecol, 1989, 3(3):297-302. doi:10.2307/2389369.
    [45] ABRAHAMSON W G. Patterns of resource allocation in wildflower populations of fields and woods[J]. Am J Bot, 1979, 66(1):71-79. doi:10.2307/2442627.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

路国辉,王英强.不同生境自交植物黄花大苞姜生殖分配的研究[J].热带亚热带植物学报,2023,31(5):686~694

复制
分享
文章指标
  • 点击次数:163
  • 下载次数: 516
  • HTML阅读次数: 459
  • 引用次数: 0
历史
  • 收稿日期:2022-03-11
  • 最后修改日期:2022-05-30
  • 录用日期:2022-06-02
  • 在线发布日期: 2023-09-26
  • 出版日期: 2023-09-20
文章二维码