不同倍性白姜花切花挥发性成分差异分析
作者:
基金项目:

广东省创新强校工程基础研究重点项目及应用研究重点项目(2018KZDXM049);广州市科技计划项目(201804010413, 202102080244);广东第二师范学院大学生创新创业训练计划(202114278106, 202214278097);广东省大学生攀登计划项目(pdjh2022b0383)资助


Volatile Components in Cut Flowers of Diploid and Tetraploid Hedychium coronarium
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为比较二倍体和四倍体白姜花(Hedychium coronarium)切花挥发性成分差异,采用顶空固相微萃取(HS-SPME)和气相色谱-质谱联用(GC-MS)技术测定了二倍体和四倍体白姜花切花初开期、盛开期和初衰期释放物质种类,通过峰面积归一法测定了各成分的相对含量,建立正交偏最小二乘判别分析(OPLS-DA)模型进行主成分分析和变量重要性投影(VIP)分析。结果表明,白姜花切花挥发性成分包含63种萜烯类、40种苯丙素类和22种脂肪酸衍生物类物质;萜烯类物质相对含量大于其他两类,四倍体白姜花在初开和盛开期挥发物质总质量极显著大于二倍体。二倍体与四倍体挥发性成分的组间差距明显,两个倍性组内差距在正常范围内;挥发性成分约63.7%的代表性特征得到较好聚类;优势成分和劣势成分均是两个倍性白姜花差异的重要成分。在盛开期和初衰期,α-罗勒烯是四倍体特有的且相对含量最大的优势成分,β-罗勒烯是二倍体中相对含量最大且显著多于四倍体的优势成分;二倍体和四倍体共有的优势成分和贡献较大的物质是石竹烯、沉香醇、桉树脑、α-金合欢烯和苯甲酸甲酯等。总体上,二倍体白姜花在四倍化过程中挥发性成分种类和总含量增加,相同倍性不同时期的挥发性成分种类和含量也存在差异,白姜花切花的挥发性成分以萜烯类为主。

    Abstract:

    In order to compare the difference of volatile components in cut flowers of diploid and tetraploid Hedychium coronarium, the types of volatile components released from cut flowers were determined by headspace solid phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS) at initial opening, blooming and early decay stages. The relative content of each component was determined by the peak area normalization method, and the orthogonal partial least quadratic discriminant analysis (OPLS-DA) model was established for principal component analysis and variable importance projection (VIP) analysis. The results showed that there were 63 terpenoids, 40 phenylpropanoids, and 22 fatty acid derivatives identified from the cut flowers. The relative content of terpenoids was higher than that of the other components. The total volatile mass of tetraploid flowers was significantly higher than those of diploids at initial opening and blooming stages. The difference of volatile components between diploid and tetraploid groups was obvious, and the difference within the two ploid groups was within the normal range. About 63.7% representative characteristics of volatile compounds were clustered. The variance analysis of the volatile compounds showed that the dominant and minor compounds contributed to the difference between the diploid and tetraploid. During blooming and early decaying stages, α-ocimene was the dominant component of tetraploid with the highest relative content, while β-ocimene was the dominant component with the highest relative content in diploid and significantly more than that in tetraploid. The common dominant components and contributions of diploid and tetraploid were caryophyllene, linalool, cineole, α-farnesene, and methyl benzenecarboxylate. Therefore, the types and total contents of volatile components increased with quadrupling process, and the types and contents of volatile components at different periods of the same ploidy were also different. The main volatile components of H. coronarium were terpenes.

    参考文献
    [1] DE VEGA C, HERRERA C M, DÖTTERL S. Floral volatiles play a key role in specialized ant pollination[J]. Perspect Plant Ecol Evol Syst, 2014, 16(1):32-42. doi:10.1016/j.ppees.2013.11.002.
    [2] Lim T K. Edible Medicinal and Non Medicinal Plants, Volume 8 Flowers[M]. Dordrecht:Springer, 2014:847-856. doi:10.1007/978-94-017-8748-2.
    [3] YUE Y C, YU R C, FAN Y P. Characterization of two monoterpene synthases involved in floral scent formation in Hedychium coronarium[J]. Planta, 2014, 240(4):745-762. doi:10.1007/s00425-014-2127-x.
    [4] JI B B, HU X, HUANG J Q, et al. Review on chemical constituents of Hedychium coronarium J. Koenig and their biological and pharmacological activities[J]. J Zhongkai Univ Agric Eng, 2018, 31(3):64-71.[姬兵兵, 胡秀, 黄嘉琦, 等. 白姜花化学成分及其生物和药理活性研究进展[J]. 仲恺农业工程学院学报, 2018, 31(3):64-71. doi:10.3969/j.issn.1674-5663.2018.03.011.]
    [5] Gross K, Schiestl F P. Are tetraploids more successful? Floral signals, reproductive success and floral isolation in mixed-ploidy populations of a terrestrial orchid[J]. Ann Bot, 2015, 115(2):263-273. doi:10.1093/aob/mcu244.
    [6] JERsáková J, Castro S, Sonk N, et al. Absence of pollinatormediated premating barriers in mixed-ploidy populations of Gymnadenia conopsea s.l. (Orchidaceae)[J]. Evol Ecol, 2010, 24(5):1199-1218. doi:10.1007/s10682-010-9356-7.
    [7] LAVANIA U C. Genomic and ploidy manipulation for enhanced production of phyto-pharmaceuticals[J]. Plant Genet Resour, 2005, 3(2):170-177. doi:10.1079/PGR200576.
    [8] TU H Y, Zhang A L, Xiao W, et al. Induction and identification of tetraploid Hedychium coronarium through thin cell layer culture[J]. Plant Cell Tiss Organ Cult, 2018, 135(3):395-406. doi:10.1007/s 11240-018-1472-z.
    [9] ZHAO Y Q, PAN H T, ZHANG Q X, et al. Studies on the volatile constituents from cultivars of Prunus mume[J]. J Trop Subtrop Bot, 2010, 18(3):310-315.[赵印泉, 潘会堂, 张启翔, 等. 不同类型梅花品种挥发性成分的研究[J]. 热带亚热带植物学报, 2010, 18(3):310-315. doi:10.3969/j.issn.1005-3395.2010.03.017.]
    [10] ZOU J J, CAI X, ZENG X L, et al. Changes of aroma-active compounds in different cultivars of Osmanthus fragrans during flowering[J]. Acta Hort Sin, 2017, 44(8):1517-1534.[邹晶晶, 蔡璇, 曾祥玲, 等. 桂花不同品种开花过程中香气活性物质的变化[J]. 园艺学报, 2017, 44(8):1517-1534. doi:10.16420/j.issn.0513-353x.2017-0050.]
    [11] DU F, WANG T, FAN J M, et al. Volatile composition and classification of Lilium flower aroma types and identification, polymerphisms, and alternative splicing of their monoterpene synthase genes[J]. Hort Res, 2019, 6:110. doi:10.1038/s41438-019-0192-9.
    [12] Zhang T X, Bao F, Yang Y J, et al. A comparative analysis of floral scent compounds in intraspecific cultivars of Prunus mume with different corolla colours[J]. Molecules, 2019, 25(1):145. doi:10.3390/molecules25010145.
    [13] YUAN Y, SUN Y, ZHAO Y C, et al. Identification of floral scent profiles in bearded irises[J]. Molecules, 2019, 24(9):1773. doi:10. 3390/molecules24091773.
    [14] FAN Z Q, LI J Y, LI X L, et al. Composition analysis of floral scent within genus Camellia uncovers substantial interspecific variations[J]. Sci Hort, 2019, 250:207-213. doi:10.1016/j.scienta.2019.02.050.
    [15] MUHLEMANN J K, KLEMPIEN A, DUDAREVA N. Floral volatiles:From biosynthesis to function[J]. Plant Cell Environ, 2014, 37(8):1936-1949. doi:10.1111/pce.12314.
    [16] LI R H, FAN Y P. Changes in floral aroma constituents in Hedychium coronarium koenig during different blooming stages[J]. Plant Physiol Commun, 2007, 43(1):176-180.[李瑞红, 范燕萍. 白姜花不同开花时期的香味组分及其变化[J]. 植物生理学通讯, 2007, 43(1):176-180.]
    [17] ASAKAWA Y, LUDWICZUK A, NAGASHIMA F. Phytochemical and biological studies of bryophytes[J]. Phytochemistry, 2013, 91:52-80. doi:10.1016/j.phytochem.2012.04.012.
    [18] CHEN F, LUDWICZUK A, WEI G, et al. Terpenoid secondary metabolites in bryophytes:Chemical diversity, biosynthesis and biological functions[J]. Crit Rev Plant Sci, 2018, 37(2/3):210-231. doi:10.1080/07352689.2018.1482397.
    [19] TIAN Z H, LUO Q Y, ZUO Z J. The role of ocimene in Cinnamomum camphora resisting high temperature[J]. Plant Physiol J, 2020, 56(3):547-555.[田正凤, 罗青云, 左照江. 罗勒烯在香樟抗高温胁迫中的作用[J]. 植物生理学报, 2020, 56(3):547-555. doi:10.13592/j.cnki. ppj.2019.0248.]
    [20] GUI Q. Preliminary study on the mechanism of ocimene promoting plant insect resistance[D]. Changsha:Hunan Agricultural University, 2017.[桂茜. 罗勒烯促进植物抗虫分子机制的初步研究[D]. 长沙:湖南农业大学, 2017.]
    [21] XIAO M. Insight into the molecular basis of ocimene-primed plant defense[D]. Changsha:Hunan Agricultural University, 2019.[肖牧. 罗勒烯诱导植物防御反应的分子机制研究[D]. 长沙:湖南农业大学, 2019. doi:10.27136/d.cnki.ghunu.2019.000424.]
    [22] LI H. Molecular mechanism of the terpenoids metabolism regulation of lavender and the influence on the flower-visiting insects[D]. Beijing:Beijing Forestry University, 2019.[李慧. 薰衣草萜类代谢调控分子机制及对访花昆虫影响[D]. 北京:北京林业大学, 2019. doi:10. 26949/d.cnki.gblyu.2019.000647.]
    [23] LI L. Analysis of genes related to the terpenoids synthesis pathway in Narcissus tazetta 'Yunxiang' based on Transcriptome data[D]. Fuzhou:Fujian Agriculture and Forestry University, 2019.[李琳. 基于转录组分析'云香'水仙萜类合成途径基因的研究[D]. 福州:福建农林大学, 2019.]
    [24] QIAN X H, CHEN L Q, LI B, et al. Analysis of aromatic components from different genotypes of Chimonanthus praecox in Yunnan Province[J]. SW China J Agric Sci, 2021, 34(4):834-841.[钱晓慧, 陈龙清, 李彪, 等. 云南地区不同基因型蜡梅花香气成分分析[J]. 西南农业学报, 2021, 34(4):834-841. doi:10.16213/j.cnki.scjas.2021.4.022.]
    [25] LU A X, ZHOU X R, YE Y L, et al. Changes of sensory characteristic and volatiles of harvested flowers of Chimonanthus praecox during spreading process[J]. Acta Hort Sin, 2020, 47(1):73-84.[陆安霞, 周心如, 叶玉龙, 等. 蜡梅花离体摊放过程中香气感官评价和挥发性物质分析[J]. 园艺学报, 2020, 47(1):73-84. doi:10.16420/j.issn. 0513-353x.20190-0233.]
    [26] MADLUNG A, WENDEL J F. Genetic and epigenetic aspects of polyploid evolution in plants[J]. Cytogenet Genome Res, 2013, 140(2/3/4):270-285. doi:10.1159/000351430.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张爱玲,涂红艳,肖望,陆秋婵,钟晓晴,吕雨欣,易新萍,卢娜,何灏城.不同倍性白姜花切花挥发性成分差异分析[J].热带亚热带植物学报,2023,31(4):585~594

复制
分享
文章指标
  • 点击次数:146
  • 下载次数: 550
  • HTML阅读次数: 416
  • 引用次数: 0
历史
  • 收稿日期:2022-02-28
  • 最后修改日期:2022-08-24
  • 在线发布日期: 2023-08-04
  • 出版日期: 2023-07-20
文章二维码