基于整合方法分析茶树响应病原真菌胁迫的共有模式
作者:
基金项目:

福建农林大学科技创新专项基金项目(KFA20047A,KFA20143A);福建农林大学大学生创新项目(202110389107)资助


Common Pattern in Response to Pathogenic Fungal Stress of Tea Plants Based on Meta-analysis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [41]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为探讨茶树(Camellia sinensis)对病菌胁迫的共有响应模式和抗病机制,运用生物信息学方法对多组RNA-seq数据进行提取、整合及功能富集,结合多种工具和数据库资源对主要调控分子及蛋白互作模块加以分析。结果表明,病原真菌胁迫下,茶树有较多细胞色素P450家族成员表达显著上调;类固醇和激素的代谢过程、苯丙烷合成途径被激活,有丝分裂细胞周期调控、DNA甲基化等生物过程及光合作用途径受到抑制;主要调控分子如转录因子WRKYNAC、激酶RLK-PelleCAMK等以上调为主。差异表达的蛋白互作模块分析表明,有丝分裂周期调控、基于微管运动、淀粉和蔗糖代谢、细胞壁多糖合成、光合作用、类黄酮代谢模块明显下调,木质素合成和萜类生物合成模块上调;且模块之间可能存在互作。病菌胁迫激活的木质素和萜类合成途径的关键基因包括阿魏酸-5-羟基化酶基因F5H、过氧化物酶基因POD和萜类合成酶基因HMGR等。细胞色素P450基因可能在病菌胁迫中起关键作用,增强木质素和萜类物质的合成、削弱光合作用可能是茶树响应真菌胁迫的核心模式。

    Abstract:

    To explore the common response mode and disease resistance mechanism of tea plants (Camellia sinensis) to pathogenic stress, bioinformatics methods were used to extract, integrate and function enrich of multiple sets of RNA-seq data, and the main regulatory molecules and protein interaction modules were analyzed by combining various tools and database resources. This results showed that the expression of cytochrome P450 family members in tea plant was significantly up-regulated under the fungal pathogen stress. The metabolic processes of steroid and hormone, and phenylpropanoid synthesis pathway were activated, and the biological processes, such as mitotic cell cycle regulation, DNA methylation and photosynthesis pathway were inhibited. The major regulatory molecules, such as WRKY and NAC transcription factors, the RLK-Pelle and CAMK family of kinases were mainly up-regulated. The differentially expressed protein interaction modules showed that the modules involved in mitotic cycle regulation, microtubule motion-based, starch and sucrose metabolism, cell wall polysaccharide synthesis, photosynthesis, flavonoid metabolism were down-regulated, while lignin synthesis and terpenoid biosynthesis were up-regulated. There may be interactions between modules. The key genes in lignin and terpenoid synthesis pathways activated by pathogen stress included ferulic acid-5-hydroxylase gene (F5H), peroxidase gene (POD) and terpenoid synthase gene HMGR. Cytochrome P450 gene might play a key role in fungus stress of tea plants. Enhancing the synthesis of lignin and terpenoids, and weakening photosynthesis might be the core modes of tea plants responding to fungus stress.

    参考文献
    [1] TANG J X, WANG P J, E Y H, et al. Climatic suitability zoning of tea planting in China's mainland[J]. J Appl Meteor Sci, 2021, 32(4):397-407.[唐俊贤, 王培娟, 俄有浩, 等. 中国大陆茶树种植气候适宜性区划[J]. 应用气象学报, 2021, 32(4):397-407.]
    [2] CAI X M, LUO Z X, BIAN L, et al. Tea pest prevention and control progress during the 13th five-year plan period and development direction in the 14th five-year plan period[J]. China Tea, 2021, 43(9):66-73.[蔡晓明, 罗宗秀, 边磊, 等. 茶园绿色防控"十三五"进展及"十四五"发展方向[J]. 中国茶叶, 2021, 43(9):66-73. doi:10.3969/j.issn.1000-3150.2021.09.010.]
    [3] WEI C L, YANG H, WANG S B, et al. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality[J]. Proc Natl Acad Sci USA, 2018, 115(18):E4151-E4158. doi:10.1073/pnas.1719622115.
    [4] CHEN J D, ZHENG C, MA J Q, et al. The chromosome-scale genome reveals the evolution and diversification after the recent tetraploidi-zation event in tea plant[J]. Hort Res, 2020, 7:63. doi:10.1038/s41438-020-0288-2.
    [5] WANG Y C, HAO X Y, LU Q H, et al. Transcriptional analysis and histochemistry reveal that hypersensitive cell death and H2O2 have crucial roles in the resistance of tea plant[Camellia sinensis (L.) O. Kuntze] to anthracnose[J]. Hort Res, 2018, 5:18. doi:10.1038/s41438-018-0025-2.
    [6] LU Q H, WANG Y C, XIONG F, et al. Integrated transcriptomic and metabolomic analyses reveal the effects of callose deposition and multihormone signal transduction pathways on the tea plant-Colletotri-chum camelliae interaction[J]. Sci Rep, 2020, 10(1):12858. doi:10. 1038/s41598-020-69729-x..
    [7] YANG H, LUO P G. Changes in photosynthesis could provide impor-tant insight into the interaction between wheat and fungal pathogens[J]. Int J Mol Sci, 2021, 22(16):8865. doi:10.3390/ijms 22168865.
    [8] JIANG S L, YIN Q X, LI D X, et al. Integrated mRNA and small RNA sequencing for analyzing tea leaf spot pathogen Lasiodiplodia theobromae, under in vitro conditions and the course of infection[J]. Phytopathology, 2021, 111(5):882-885. doi:10.1094/PHYTO-07-20-0297-A.
    [9] XU R F, YANG K, DING J, et al. Effect of green tea supplementation on blood pressure:A systematic review and meta-analysis of rando-mized controlled trials[J]. Medicine, 2020, 99(6):e19047. doi:10. 1097/MD.0000000000019047.
    [10] ASHRAFI-DEHKORDI E, ALEMZADEH A, TANAKA N, et al. Meta-analysis of transcriptomic responses to biotic and abiotic stress in tomato[J]. PeerJ, 2018, 6:e4631. doi:10.7717/peerj.4631.
    [11] PANAHI B, FRAHADIAN M, DUMS J T, et al. Integration of cross species RNA-seq meta-analysis and machine-learning models identifies the most important salt stress-responsive pathways in Microalga duna-liella[J]. Front Genet, 2019, 10:752. doi:10.3389/fgene.2019.00752.
    [12] WANG S S, LIU L, MI X Z, et al. Multi-omics analysis to visualize the dynamic roles of defense genes in the response of tea plants to gray blight[J]. Plant J, 2021, 106(3):862-875. doi:10.1111/tpj.15203.
    [13] RAU A, MAROT G, JAFFRÉZIC F. Differential meta-analysis of RNA-seq data from multiple studies[J]. BMC Bioinform, 2014, 15:91. doi:10.1186/1471-2105-15-91.
    [14] PANDIAN B A, SATHISHRAJ R, DJANAGUIRAMAN M, et al. Role of cytochrome P450 enzymes in plant stress response[J]. Antioxidants, 2020, 9(5):454. doi:10.3390/antiox9050454.
    [15] FLORYSZAK-WIECZOREK J, ARASIMOWICZ-JELONEK M. The multifunctional face of plant carbonic anhydrase[J]. Plant Physiol Biochem, 2017, 112:362-368. doi:10.1016/j.plaphy.2017.01.007.
    [16] BARROS J, SERK H, GRANLUND I, et al. The cell biology of lignification in higher plants[J]. Ann Bot, 2015, 115(7):1053-1074. doi:10.1093/aob/mcv046.
    [17] WEI R F, LAI J D, PENG C B, et al. cDNA-AFLP reveals differential gene expression profiles of tea plant (Camellia sinensis cv. Maoxie) induced by Colletotrichum sp.1 infection[J]. J Tea Sci, 2020, 40(1):26-38.[魏日凤, 赖建东, 彭成彬, 等. 利用cDNA-AFLP技术分析炭疽菌危害诱导茶树的差异表达基因[J]. 茶叶科学, 2020, 40(1):26-38. doi:10.3969/j.issn.1000-369X.2020.01.003.]
    [18] LIU S Y, ZHANG Q Q, GUAN C F, et al. Transcription factor WRKY14 mediates resistance of tea plants[Camellia sinensis (L.) O. Kuntze] to blister blight[J]. Physiol Mol Plant Pathol, 2021, 155:101667. doi:10.1016/j.pmpp.2021.101667.
    [19] BIAN Z Y, GAO H H, WANG C Y. NAC transcription factors as positive or negative regulators during ongoing battle between patho-gens and our food crops[J]. Int J Mol Sci, 2021, 22(1):81. doi:10. 3390/ijms22010081.
    [20] IMANO S, FUSHIMI M, CAMAGNA M, et al. AP2/ERF transcription factor NbERF-IX-33 is involved in the regulation of phytoalexin production for the resistance of Nicotiana benthamiana to Phyto-phthora infestans[J]. Front Plant Sci, 2022, 12:821574. doi:10.3389/fpls.2021.821574.
    [21] HUH S U. Functional analysis of hot pepper ethylene responsive factor 1A in plant defense[J]. Plant Signal Behav, 2022:2027137. doi:10. 1080/15592324.2022.2027137.
    [22] ZHU Y T, HU X Q, WANG P, et al. GhODO1, an R2R3-type MYB transcription factor, positively regulates cotton resistance to Vertici-llium dahliae via the lignin biosynthesis and jasmonic acid signaling pathway[J]. Int J Biol Macromol, 2022, 201:580-591. doi:10.1016/j. ijbiomac.2022.01.120.
    [23] ZHU K K, WANG X L, LIU J Y, et al. The grapevine kinome:Annotation, classification and expression patterns in developmental processes and stress responses[J]. Hort Res, 2018, 5:19. doi:10.1038/s41438-018-0027-0.
    [24] FERREIRA-NETO J R C, DA COSTA B A N, DA SILVA M D, et al. The cowpea kinome:Genomic and transcriptomic analysis under biotic and abiotic stresses[J]. Front Plant Sci, 2021, 12:667013. doi:10. 3389/fpls.2021.667013.
    [25] DING C Q, LEI L, YAO L N, et al. The involvements of calcium-dependent protein kinases and catechins in tea plant[Camellia sinensis (L.) O. Kuntze] cold responses[J]. Plant Physiol Biochem, 2019, 143:190-202. doi:10.1016/j.plaphy.2019.09.005.
    [26] JEYARAJ A, WANG X W, WANG S S, et al. Identification of regulatory networks of microRNAs and their targets in response to Colletotrichum gloeosporioides in tea plant (Camellia sinensis L.)[J]. Front Plant Sci, 2019, 10:1096. doi:10.3389/fpls.2019.01096.
    [27] JIN W B, WU F L. Identification and characterization of cucumber microRNAs in response to Pseudoperonospora cubensis infection[J]. Gene, 2015, 569(2):225-232. doi:10.1016/j.gene.2015.05.064.
    [28] LI Y, LU Y G, SHI Y, et al. Multiple rice microRNAs are involved in immunity against the blast fungus Magnaporthe oryzae[J]. Plant Physiol, 2014, 164(2):1077-1092. doi:10.1104/pp.113.230052.
    [29] YANG C C, WU P F, YAO X H, et al. Integrated transcriptome and metabolome analysis reveals key metabolites involved in Camellia oleifera defense against anthracnose[J]. Int J Mol Sci, 2022, 23(1):536. doi:10.3390/ijms23010536.
    [30] JIA X L, WANG G L, XIONG F, et al. De novo assembly, trans-criptome characterization, lignin accumulation and anatomic character-ristics:Novel insights into lignin biosynthesis during celery leaf development[J]. Sci Rep, 2015, 5:8259. doi:10.1038/srep08259.
    [31] LIU X T, CAO X Q, SHI S C, et al. Comparative RNA-Seq analysis reveals a critical role for brassinosteroids in rose (Rosa hybrida) petal defense against Botrytis cinerea infection[J]. BMC Genet, 2018, 19(1):62. doi:10.1186/s12863-018-0668-x.
    [32] YANG R, JIANG S L, LI D X, et al. Integrated mRNA and small RNA sequencing for analyzing leaf spot pathogen Didymella segeticola and its host, tea (Camellia sinensis), during infection[J]. Mol Plant Microbe Interact, 2021, 34(1):127-130. doi:10.1094/MPMI-07-20-0207-A.
    [33] ZHANG Y, ZHANG A H, LI X M, et al. The role of chloroplast gene expression in plant responses to environmental stress[J]. Int J Mol Sci, 2020, 21(17):6082. doi:10.3390/ijms21176082.
    [34] KANGASJÄRVI S, TIKKANEN M, DURIAN G, et al. Photosynthetic light reactions:An adjustable hub in basic production and plant immunity signaling[J]. Plant Physiol Biochem, 2014, 81:128-134. doi:10.1016/j.plaphy.2013.12.004.
    [35] SHASMITA, SAMAL P, MOHAPATRA P K, et al. Improved photo-system II and defense enzymes activity in rice (Oryza sativa) by biopriming against Xanthomonas oryzae pv. oryzae[J]. Funct Plant Biol, 2021, 48(3):298-311. doi:10.1071/FP20221.
    [36] BWALYA J, ALAZEM M, KIM K H. Photosynthesis-related genes induce resistance against soybean mosaic virus:Evidence for involve-ment of the RNA silencing pathway[J]. Mol Plant Pathol, 2022, 23(4):543-560. doi:10.1111/mpp.13177.
    [37] LIU B G. Transcription regulation of lignin biosynthesis and interaction of monolignol biosynthesis enzymes in Populus trichocarpa[D]. Harbin:Northeast Forestry University, 2020.[刘宝光. 毛果杨木质素生物合成的转录调控及单体生物合成酶互作研究[D]. 哈尔滨:东北林业大学, 2020.]
    [38] LIN CY, SUN Y, SONG J N, et al. Enzyme complexes of Ptr4CL and PtrHCT modulate co-enzyme a ligation of hydroxycinnamic acids for monolignol biosynthesis in Populus trichocarpa[J]. Front Plant Sci, 2021, 12:727932. doi:10.3389/fpls.2021.727932.
    [39] LI X, ZHANG Y Y, ZHAO S J, et al. Omics analyses indicate the routes of lignin related metabolites regulated by trypsin during storage of pitaya (Hylocereus undatus)[J]. Genomics, 2021, 113(6):3681-3695. doi:10.1016/j.ygeno.2021.08.005.
    [40] VÖGELI B, ENGILBERGE S, GIRARD E, et al. Archaeal aceto-acetyl-CoA thiolase/HMG-CoA synthase complex channels the inter-mediate via a fused CoA-binding site[J]. Proc Natl Acad Sci USA, 2018, 115(13):3380-3385. doi:10.1073/pnas.1718649115.
    [41] ZHENG T, GUAN L B, YU K, et al. Expressional diversity of grape-vine 3-hydroxy-3-methylglutaryl-CoA reductase (VvHMGR) in different grapes genotypes[J]. BMC Plant Biol, 2021, 21(1):279. doi:10.1186/s 12870-021-03073-8.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

连玲丽,陈强,周颖,付婧,李婉莹,魏日凤,刘伟.基于整合方法分析茶树响应病原真菌胁迫的共有模式[J].热带亚热带植物学报,2023,31(1):81~92

复制
分享
文章指标
  • 点击次数:168
  • 下载次数: 425
  • HTML阅读次数: 338
  • 引用次数: 0
历史
  • 收稿日期:2022-02-24
  • 最后修改日期:2022-03-27
  • 在线发布日期: 2023-02-24
  • 出版日期: 2023-01-20
文章二维码