湿地水鸟栖息对土壤磷和植物群落特征的影响
作者:
基金项目:

2021 年度自然资源事务管理-生态林业建设专项资金项目([2021]15)资助


Effects of Soil Phosphorus Content on Plant Communities in Waterfowl Habitats
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [40]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了探究水鸟栖息对土壤磷和植物群落特征的影响,分别在广东顺德水鸟天堂、广东星湖湿地及江门小鸟天堂3地的水鸟栖息区(水鸟区)和非水鸟栖息区(对照区)进行了植物群落调查和土壤理化性质检测。结果表明,水鸟活动提高了各栖息地土壤的总磷、有效磷和无机磷,而在顺德、星湖两地水鸟区土壤有机磷含量亦显著高于对照区。各栖息地植物物种丰富度和shannon多样性指数均显著小于对照区。土壤pH、容重、有机质和有效磷4种环境因子对植物群落变异影响的总解释率为46% (P<0.05),其中有效磷是最大影响因子。这说明水鸟活动显著提高了土壤中各种磷组分的含量,降低了植物的多样性。

    Abstract:

    Waterfowl activities transport nutrients, such as nitrogen and phosphorus, to terrestrial habitats, and cause soil nutrient enrichment, which may change the vegetation communities, and species richness of habitat ecosystems. To investigate the influence of waterfowl inhabitation on soil physicochemical properties and plant community characteristics, the changes in plant community and soil physicochemical property were studied in Shunde Waterbird Paradise, Xinghu Wetland, and Jiangmen Little Bird Paradise of Guangdong Province. The results showed that waterbird activities significantly increased the soil total phosphorus, available phosphorus, and inorganic phosphorus contents. In Shunde and Xinghu, the organic phosphorus content of the inhabited area was significantly higher than that of the control area. The plant richness and Shannon diversity index of inhabited areas were significantly lower than those of the control area. The total explanation rate of four environmental factors, including soil pH, density, organic matter, and available phosphorus, on plant community variation were 46% (P<0.05), among which available phosphorus was the most influential factor. Therefore, it was suggested that waterbird activity significantly increases the contents of various phosphorus fractions in the soil and decreases plant diversity.

    参考文献
    [1] Wu C Y, Chen W, Cao C X, et al. Diagnosis of wetland ecosystem health in the Zoige wetland, Sichuan of China[J]. Wetlands, 2018, 38(3):469-484. doi:10.1007/s13157-018-0992-y.
    [2] LI B. Ecology[M]. Beijing:Higher Education Press, 2000:1-399.[李博. 生态学[M]. 北京:高等教育出版社, 2000:1-399.]
    [3] Du E Z, Terrer C, PELLEGRINI A F A, et al. Global patterns of terrestrial nitrogen and phosphorus limitation[J]. Nat Geosci, 2020, 13(3):221-226. doi:10.1038/s41561-019-0530-4.
    [4] SHAO X X, YANG H, LIU X C, et al. Nutrient accumulation characteristics of soil in egret habitat in Hangzhou Bay Wetland[J]. J Forest Environ, 2019, 39(4):404-409. doi:10.13324/j.cnki.jfcf.2019. 04.012.[邵学新, 杨慧, 刘旭川, 等. 杭州湾湿地鹭鸟栖息地土壤养分累积特征[J]. 森林与环境学报, 2019, 39(4):404-409. doi:10. 13324/j.cnki.jfcf.2019.04.012.]
    [5] Otero X L, Tejada O, MartÍn-Pastor M, et al. Phosphorus in seagull colonies and the effect on the habitats. The case of yellow-legged gulls (Larus michahellis) in the Atlantic Islands National Park (Galicia-NW Spain)[J]. Sci Total Environ, 2015, 532:383-397. doi:10.1016/j.scitotenv.2015.06.013.
    [6] Litaor M I, Reichmann O, Dente E, et al. The impact of ornithogenic inputs on phosphorous transport from altered wetland soils to waterways in East Mediterranean ecosystem[J]. Sci Total Environ, 2014, 473-474:36-42. doi:10.1016/j.scitotenv.2013.11.126.
    [7] Duda M P, Glew J R, Michelutti N, et al. Long-term changes in terrestrial vegetation linked to shifts in a colonial seabird population[J]. Ecosystems, 2020, 23(8):1643-1656. doi:10.1007/s10021-020-00494-8.
    [8] IRICK D L, GU B H, LI Y C, et al. Wading bird guano enrichment of soil nutrients in tree islands of the Florida Everglades[J]. Sci Total Environ, 2015, 532:40-47. doi:10.1016/j.scitotenv.2015.05.097.
    [9] Zhong H T, Kim Y N, Smith C, et al. Seabird guano and phosphorus fractionation in a rhizosphere with earthworms[J]. Appl Soil Ecol, 2017, 120:197-205. doi:10.1016/j.apsoil.2017.08.006.
    [10] Bokhorst S, Convey P, Aerts R. Nitrogen inputs by marine vertebrates drive abundance and richness in Antarctic terrestrial ecosystems[J]. Curr Biol, 2019, 29(10):1721-1727.e3. doi:10.1016/j. cub.2019.04.038.
    [11] Ellis J C. Marine birds on land:A review of plant biomass, species richness, and community composition in seabird colonies[J]. Plant Ecol, 2005, 181(2):227-241. doi:10.1007/s11258-005-7147-y.
    [12] ZWOLICKI A, ZMUDCZYŃSKA-SKARBEK K, MATUŁA J, et al. Differential responses of arctic vegetation to nutrient enrichment by plankton-and fish-eating colonial seabirds in Spitsbergen[J]. Front Plant Sci, 2016, 7:1959. doi:10.3389/fpls.2016.01959.
    [13] Maron J L, Estes J A, Croll D A, et al. An introduced predator alters Aleutian Island plant communities by thwarting nutrient subsidies[J]. Ecol Monogr, 2006, 76(1):3-24.
    [14] Wait D A, Aubrey D P, Anderson W B. Seabird guano influences on desert islands:Soil chemistry and herbaceous species richness and productivity[J]. J Arid Environ, 2005, 60(4):681-695.
    [15] Ceulemans T, Stevens C J, Duchateau L, et al. Soil phosphorus constrains biodiversity across European grasslands[J]. Glob Change Biol, 2014, 20(12):3814-3822.
    [16] Wassen M J, Venterink H O, Lapshina E D, et al. Endangered plants persist under phosphorus limitation[J]. Nature, 2005, 437(7058):547-550.
    [17] DENG T P. A preliminary study on nidification habitat selection and niche of Ardeidae birds[D]. Zhengzhou:Henan University, 2008.[邓天鹏. 鹭科鸟类营巢地选择和生态位的研究[D]. 郑州:河南大学, 2008.]
    [18] GE P Y, YANG T W, ZHANG P, et al. Ecological restoration project for Yancheng Coastal Wetland based on bird habitat demand:A case study of Chenjiagang Reservoir[J]. Wetl Sci Manag, 2021, 17(4):33-36.[戈萍燕, 杨棠武, 张鹏, 等. 基于鸟类栖息需求的盐城滨海湿地生态修复工程:以陈家港水库生态修复工程为例[J]. 湿地科学与管理, 2021, 17(4):33-36. doi:10.3969/j.issn.1673-3290.2021.04.07.]
    [19] HU H R, TIAN K. Guidance Course for Soil Experiment[M]. Beijing:China Forestry Publishing House, 2012:1-107.[胡慧蓉, 田昆. 土壤学实验指导教程[M]. 北京:中国林业出版社, 2012:1-107.]
    [20] QIAN B, LIU L, XIAO X. Comparative tests on different methods for content of soil organic matter[J]. J Hohai Univ (Nat Sci), 2011, 39(1):34-38.[钱宝, 刘凌, 肖潇. 土壤有机质测定方法对比分析[J]. 河海大学学报(自然科学版), 2011, 39(1):34-38. doi:10.3876/j.issn. 1000-1980.2011.01.008.]
    [21] LI J Y. Determination of hydrolyzable nitrogen in soil (alkaline hydrolysis diffusion method)[J]. Inform Agric Sci Technol, 2010(10):15.[李金彦. 土壤水解性氮的测定(碱解扩散法)[J]. 农业科技与信息, 2010(10):15. doi:10.3969/j.issn.1003-6997.2010.10.008.]
    [22] QIAO R Z, DONG H Y, SUN Q W, Phosphorus determination methods of forest soil:LY/T 1232-2015[S]. Beijing:China Quality and Standards Publishing & Media Co., Ltd, 2015:1-16.[焦如珍, 董红玉, 孙启武. 森林土壤磷的测定:LY/T 1232-2015[S]. 北京:中国标准出版社, 2015:1-16.]
    [23] SUN X Y. Pedology[M]. Beijing:China Forestry Publishing House, 2005:1-358.[孙向阳. 土壤学[M]. 北京:中国林业出版社, 2005:1-358.]
    [24] ZENG Z B, ZENG S J, TANG J D, et al. Space-temporal variation of farmland soil AP in Guangdong Province and their causing factors[J]. Ecol Environ Sci, 2014, 23(3):444-451.[曾招兵, 曾思坚, 汤建东, 等. 广东省耕地土壤有效磷时空变化特征及影响因素分析[J]. 生态环境学报, 2014, 23(3):444-451. doi:10.3969/j.issn.1674-5906. 2014.03.012.]
    [25] ZHAO Y H, WU M, SHAO X X. Impact of egrets habitation on accumulation and distribution of various forms of phosphorus in soils of Hangzhou Bay wetland[J]. Acta Ecol Sin, 2021, 41(20):8246-8255.[赵亦欢, 吴明, 邵学新. 鹭鸟栖息对杭州湾湿地土壤磷累积及形态分布的影响[J]. 生态学报, 2021, 41(20):8246-8255. doi:10.5846/stxb202010192658.]
    [26] CHEN G C, GAN L, WANG S L, et al. Progress in geochemistry of phosphorus in soils[J]. Geology-Geochemistry, 2001, 29(2):78-81.[陈刚才, 甘露, 王仕禄, 等. 土壤中元素磷的地球化学[J]. 地质地球化学, 2001, 29(2):78-81. doi:10.3969/j.issn.1672-9250.2001.02. 013.]
    [27] HU H R, BEI R T, WANG Y X. Forest Pedology[M]. Beijing:China Forestry Publishing House, 2019:1-274.[胡慧蓉, 贝蓉塔, 王艳霞. 森林土壤学[M]. 北京:中国林业出版社, 2019:1-274.]
    [28] Luis O X, De La Peña-Lastra S, Pérez-Alberti A, et al. Seabird colonies as important global drivers in the nitrogen and phosphorus cycles[J]. Nat Commun, 2018, 9(1):246. doi:10.1038/s 41467-017-02446-8.
    [29] PENG S L, CHEN Z H. Research on the species divercity of plant of the subtropical forests in Guangdong[J]. Ecol Sci, 1983(2):98-104.[彭少麟, 陈章和. 广东亚热带森林群落物种多样性[J]. 生态科学, 1983(2):98-104.]
    [30] SIEFERT A, RAVENSCROFT C, ALTHOFF D, et al. Scale dependence of vegetation-environment relationships:A meta-analysis of multivariate data[J]. J Veg Sci, 2012, 23(5):942-951. doi:10.1111/j. 1654-1103.2012.01401.x.
    [31] LI X N, ZHANG W W, ZHAO C Q, et al. Plant diversity and soil physicochemical properties in the wasteland of Yanqing District[J]. Acta Agrest Sin, 2019, 27(3):695-701.[李晓娜, 张微微, 赵春桥, 等. 延庆区荒滩地土壤理化性质及其对植物多样性的影响[J]. 草地学报, 2019, 27(3):695-701. doi:10.11733/j.issn.1007-0435.2019.03.023.]
    [32] Hebert C E, Duffe J, Weseloh D V C, et al. Unique island habitats may be threatened by double-crested cormorants[J]. J Wildl Manage, 2005, 69(1):68-76. doi:10.2193/0022-541X(2005)069<0068:UIHMBT>2.0.CO;2.
    [33] Stewart E M, Michelutti N, Shenstone-Harris S, et al. Tracking the history and ecological changes of rising double-crested cormorant populations using pond sediments from islands in Eastern Lake Ontario[J]. PLoS One, 2015, 10(7):e0134167. doi:10.1371/journal.pone.0134167.
    [34] Gillham M. Destruction of indigenous heath vegetaion in Victorian sea-bird colonies[J]. Aust J Bot, 1960, 8(3):277-317. doi:10.1071/BT 9600277.
    [35] ZHAN M C, GUAN F Y, YAN Y J, et al. Effects of strip harvesting on species diversity of undergrowth in bamboo (Phyllostachys edulis) forest[J]. Acta Ecol Sin, 2020, 40(12):4169-4179.[詹美春, 官凤英, 晏颖杰, 等. 带状采伐对毛竹林林下植被物种多样性的影响[J]. 生态学报, 2020, 40(12):4169-4179. doi:10.5846/stxb201902200301.]
    [36] NEWBERY D M C, GARTLAN J S, MCKEY D B, et al. The influence of drainage and soil phosphorus on the vegetation of Douala-Edea Forest Reserve, Cameroun[J]. Vegetatio, 1986, 65(3):149-162. doi:10.1007/BF00044815.
    [37] CHEN X L, CHEN H Y H. Plant mixture balances terrestrial ecosystem C׃N׃P stoichiometry[J]. Nat Commun, 2021, 12(1):4562. doi:10.1038/s41467-021-24889-w.
    [38] ZHANG Q J, ZHANG G S, WAN S X, et al. Effects of herbivorous overwintering migratory birds' droppings on the decomposition of Carex cinerascens Kükenth and C, N, P release in Lake Poyang wetland[J]. J Lake Sci, 2019, 31(3):814-824.[张全军, 张广帅, 万松贤, 等. 鄱阳湖植食越冬候鸟粪便对洲滩湿地薹草枯落物分解过程及碳、氮、磷释放的影响[J]. 湖泊科学, 2019, 31(3):814-824. doi:10.18307/2019. 0319.]
    [39] Elwood J W, Newbold J D, Trimble A F, et al. The limiting role of phosphorus in a woodland stream ecosystem:Effects of P enrichment on leaf decomposition and primary producers[J]. Ecology, 1981, 62(1):146-158. doi:10.2307/1936678.
    [40] Yu M F, Tao Y X, Liu W Z, et al. C, N, and P stoichiometry and their interaction with different plant communities and soils in subtropical riparian wetlands[J]. Environ Pollut Res, 2020, 27(1):1024-1034. doi:10.1007/s11356-019-07004-x.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王丹枫,孙当歌,朱韦光,曹洪麟.湿地水鸟栖息对土壤磷和植物群落特征的影响[J].热带亚热带植物学报,2023,31(4):465~472

复制
分享
文章指标
  • 点击次数:182
  • 下载次数: 461
  • HTML阅读次数: 460
  • 引用次数: 0
历史
  • 收稿日期:2022-01-27
  • 最后修改日期:2022-03-22
  • 在线发布日期: 2023-08-04
  • 出版日期: 2023-07-20
文章二维码