短枝木麻黄家系对青枯病的抗性评价与选择
作者:
基金项目:

广东省林业科技创新项目(2018KJCX011);省级生态公益林效益补偿资金省统筹项目(2020STC-03)资助


Resistance Evaluation and Selection of Casuarina equisetifolia Families Against Ralstonia solanacearum
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为探讨短枝木麻黄(Casuarina equisetifolia)对青枯病(Ralstonia solanacearum)侵染后的生理生化响应,利用其生理生化响应指标与抗病性特征的相关性开展短枝木麻黄家系的抗病评价和选择。结果表明,26个短枝木麻黄家系褐梗小枝接种青枯病后,病情指数(DI)和相对病害强度(RDI)均存在极显著差异(P < 0.01)。在接种青枯病后,家系间的超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、苯丙氨酸解氨酶(PAL)、多酚氧化酶(PPO)、总酚(TP)和类黄酮(Flav)差异均达显著或极显著水平,说明参试家系对青枯病抗性的变异丰富,具有较大的选择潜力。短枝木麻黄家系的病情症状与6个生理生化指标间均呈显著或极显著的负相关关系,说明青枯病侵染后防御酶活性或次生代谢物含量越高,木麻黄的病害程度越低。利用2个病情特征性状和6个生理生化指标对短枝木麻黄不同家系进行综合评价和选择,按照30%的入选率初步选出201、206、198、207、202、213、208和195号等8个抗病家系。这些抗病家系的RDI和DI比总体均值分别低25.94%和28.93%,SOD、CAT、PAL、PPO、TP和Flav比总体均值分别高11.90%、13.50%、24.77%、12.71%、25.68%和18.76%。筛选出的8个家系的病害程度低,萎蔫枝条少,植株生长基本不受影响,表明抗病性较强,可以在后续生产中广泛使用。

    Abstract:

    In order to explore the physiological and biochemical response patterns of Casuarina equisetifolia against infection of Ralstonia solanacearum, the disease-resistant assessment and selection of different C. equisetifolia families were studied based on the correlations between physiological and biochemical traits and disease-resistant characteristics. The results showed that the disease index (DI) and relative disease intensity (RDI) of 26 C. equisetifolia families were significantly different after inoculated with R. solanacearum. The differences of superoxide dismutase (SOD), catalase (CAT), phenylalanine ammonialyase (PAL), polyphenol oxidase (PPO), total phenolics (TP) and flavonoid (Flav) among the families were significant or very significant, indicating that the tested families had huge variation at resistance against R. solanacearum and great selection potential is expectable. The disease incidence and intensity of the 26 families presented negative correlation with the six physiological and biochemical indexes at significant or very significant level. It was indicated in a certain range that the more defense enzyme activities or secondary metabolite contents, the lower disease incidence and intension were detected. Two disease characteristics and six physiological and biochemical parameters were used to evaluate and select C. equisetifolia families against R. solanacearum, eight resistant families, including 201, 206, 198, 207, 202, 213, 208 and 195, were preliminarily selected according to the selection rate of 30%. The mean RDI and DI of eight resistant families were 25.94% and 28.93%, respectively, which was lower than those of overall mean values. And the activities of SOD, CAT, PAL, PPO, and contents of TP, Flav in these eight families were 11.90%, 13.50%, 24.77%, 12.71%, 25.68% and 18.76% higher than those of overall mean values, respectively. Therefore, the selected 8 families showed low disease degree, few wilting branches, and plant growth was not affected, indicating strong disease resistance and could be widely used in subsequent production.

    参考文献
    [1] ZHANG Y, ZHONG C L, HAN Q, et al. Reproductive biology and breeding system in Casuarina equisetifolia (Casuarinaceae):Implication for genetic improvement[J]. Aust J Bot, 2016, 64(2):120-128. doi:10.1071/BT15184.
    [2] ZHONG C L, MANSOUR S, NAMBIAR-VEETIL M, et al. Casuarina glauca:A model tree for basic research in actinorhizal symbiosis[J]. J Biosci, 2013, 38(4):815-823. doi:10.1007/s12038-013-9370-3.
    [3] SHE X M, YU L, LAN G B, et al. Identification and genetic characterization of Ralstonia solanacearum species complex isolates from Cucurbita maxima in China[J]. Front Plant Sci, 2017, 8:1794. doi:10.3389/fpls.2017.01794.
    [4] XU X Y, ZHANG W Q, HUANG Y H, et al. Comparison of identification methods of bacterial wilt resistance in Casuarinaceae and screening of resistant germplasm resources[J]. J S China Agric Univ, 2017, 38(4):87-94. 许秀玉, 张卫强, 黄钰辉, 等. 木麻黄青枯病抗性鉴定方法比较及抗病种质筛选[J]. 华南农业大学学报, 2017, 38 (4):87-94. doi:10.7671/j.issn.1001-411X.2017.04.015.
    [5] IMAZAKI I. Studies on the mechanisms of pathogenicity in soil-borne plant pathogens[J]. J Gen Plant Pathol, 2015, 81(6):478-479. doi:10.1007/s10327-015-0610-2.
    [6] SELVAKESAVAN R K, DHANYA N N, THUSHARA P, et al. Intraspecies variation in sodium partitioning, potassium and proline accumulation under salt stress in Casuarina equisetifolia Forst[J]. Symbiosis, 2016, 70(1/2/3):117-127. doi:10.1007/s13199-016-0424-9.
    [7] FU R T, WANG J, CHEN C, et al. Effects of mycotoxins of Ustilaginoidea virens on physiological-biochemical characteristics of different resistant rice varieties[J]. Chin J Ecol, 2021, 40(9):2793-2801. 伏荣桃, 王剑, 陈诚, 等. 稻曲病菌毒素对不同抗病水稻品种生理生化特性的影响[J]. 生态学杂志, 2021, 40(9):2793-2801. doi:10.13292/j.1000-4890.202109.021.
    [8] HASSANEIN R A, HASHEM H A, FAHMY A H, et al. Protection against fusarium head blight:Important defense mechanisms studied in three regenerated Egyptian wheat cultivars[J]. J Stress Physiol Biochem, 2016, 12(3):18-43.
    [9] WEI Y C, ZHANG Y, ZHONG C L, et al. Changes in phenols contents in Casuarina equisetifolia provenances with different resistibility infected by Ralstonia solanacearum[J]. J Trop Subtrop Bot, 2019, 27(3):309-314. 魏永成, 张勇, 仲崇禄, 等. 不同抗性短枝木麻黄种源苗木接种青枯病菌后酚类物质含量的变化[J]. 热带亚热带植物学报, 2019, 27(3):309-314. doi:10.11926/jtsb.3983.
    [10] GUO Q, LIANG Z C. Resistance strains selecting and control measures of Casuarina equisetifolia against bacterial wilt[J]. For Sci Technol, 1986(4):7-9. 郭权, 梁子超. 木麻黄抗青枯病品系的筛选技术和综合防治措施[J]. 林业科技通讯, 1986(4):7-9. doi:10.13456/j.cnki.lykt.1986.04.004.
    [11] CHEN J X, WANG X F. Experimental Guidance of Plant Physiology[M]. Guangzhou:South China University of Technology Press, 2002:15-24. 陈建勋, 王晓峰. 植物生理学实验指导[M]. 广州:华南理工大学出版社, 2002:15-24.
    [12] WANG C Y, SUN S, WANG J. Relationship between tannin content from Casuarina equisetifolia and their resistance to Ralstonia solanacearum[J]. Shandong Chem Ind, 2015, 44(3):77. 王翠颖, 孙思, 王军. 木麻黄抗感青枯病品系单宁含量差异[J]. 山东化工, 2015, 44(3):77. doi:10.3969/j.issn.1008-021X.2015.03.024.
    [13] WANG C Y, SUN S, ZHOU E X, et al. Purification of total flavonoids from Casuarina equisetifolia by macroporous adsorption resin & inhibition of total flavonoids on Ralstonia solanacearum[J]. Prot For Sci Technol, 2012(1):11-14. 王翠颖, 孙思, 周而勋, 等. 大孔吸附树脂纯化木麻黄总黄酮及对青枯菌的抑制[J]. 防护林科技, 2012 (1):11-14. doi:10.3969/j.issn.1005-5215.2012.01.005.
    [14] SUN Z, ZHANG Y, MA H B. Causes and prevention strategies on the outbreak of Casuarina equisetifolia bacterial wilt in western Guangdong Province[J]. J Temp For Res, 2020, 3(3):6-10. 孙战, 张勇, 马海宾. 粤西木麻黄青枯病成灾原因及防治策略[J]. 温带林业研究, 2020, 3(3):6-10. doi:10.3969/j.issn.2096-4900.2020.03.002.
    [15] VASSE J, FREY P, TRIGALET A. Microscopic studies of intercellular infection and protoxylem invasion of tomato roots by Pseudomonas solanacearum[J]. Mol Plant-Microbe Interact, 1995, 8(2):241-251. doi:10.1094/MPMI-8-0241.
    [16] ZHANG H N, LU X H, JIN Z N, et al. Effects of drought on physiological characteristics of seedlings of four species grown on rare earth mill tailings at high temperatures[J]. Acta Ecol Sin, 2019, 39(7):2426-2434. 张海娜, 鲁向晖, 金志农, 等. 高温条件下稀土尾砂干旱对4种植物生理特性的影响[J]. 生态学报, 2019, 39(7):2426-2434. doi:10.5846/stxb201804180882.
    [17] ZHU J F, LIU J T, LU Z H, et al. Effects of salt stress on physiological characteristics of Tamarix chinensis Lour. seedlings[J]. Acta Ecol Sin, 2015, 35(15):5140-5146. 朱金方, 刘京涛, 陆兆华, 等. 盐胁迫对中国柽柳幼苗生理特性的影响[J]. 生态学报, 2015, 35(15):5140-5146. doi:10.5846/stxb201312182981.
    [18] DING L N, YANG G X. Research advances in the mechanism and signal transduction of plant disease resistance[J]. Biotechnol Bull, 2016, 32(10):109-117. 丁丽娜, 杨国兴. 植物抗病机制及信号转导的研究进展[J]. 生物技术通报, 2016, 32(10):109-117. doi:10.13560/j.cnki.biotech.bull.1985.2016.10.013.
    [19] LIU L L, CHEN Z J, CAO Z M, et al. The resistant mechanism of poplar varieties to Melamposora larici-populina[J]. J NW For Univ, 2020, 35(1):171-176. 刘莉丽, 陈祖静, 曹支敏, 等. 杨树对落叶松-杨栅锈菌抗性生理机制研究[J]. 西北林学院学报, 2020, 35(1):171-176. doi:10.3969/j.issn.1001-7461.2020.01.26.
    [20] ZHANG Y. Effects of arbuscular mycorrhizal fungi inoculation on resistance of Populus cathayana to canker disease[D]. Yangling:Northwest Agricultral & Forest University, 2021. 张钰. 接种丛枝菌根真菌对青杨抗溃疡病的影响[D]. 杨凌:西北农林科技大学, 2021. doi:http://dx.doi.org/10.27409/d.cnki.gxbnu.2021.001530.]
    [21] KWODAGA J K, SOWLEY E N K, BADⅡ B K. Antifungal activity of plant extracts against Colletotrichum gloeosporioides (Penz.) the causative agent of yam anthracnose disease[J]. Arch Phytopathol Plant Prot, 2019, 52(1/2):218-233. doi:10.1080/03235408.2019.1604303.
    [22] JIA Z C. Collaborative mechanism of genes and endogenous genes LAR3 resistance in Populus[D]. Chongqing:Southwest University, 2011. 贾之春. 外源抗病基因和单宁代谢合成关键酶基因LAR3在毛白杨中协同抗病机理研究[D]. 重庆:西南大学, 2011.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

魏龙,魏永成,孟景祥,张勇,周毅.短枝木麻黄家系对青枯病的抗性评价与选择[J].热带亚热带植物学报,2023,31(3):348~354

复制
分享
文章指标
  • 点击次数:148
  • 下载次数: 301
  • HTML阅读次数: 402
  • 引用次数: 0
历史
  • 收稿日期:2021-01-21
  • 最后修改日期:2022-05-05
  • 在线发布日期: 2023-05-24
  • 出版日期: 2023-05-20
文章二维码