华南地区固氮与非固氮豆科树种叶片养分利用策略的对比研究
作者:
基金项目:

江西省教育厅科技项目(GJJ170839)资助


Different Leaf Nutrient Use Strategies of Nitrogen-fixing and Non-nitrogen-fixing Leguminous Trees in South China
Author:
  • YE Nan

    YE Nan

    College of Life Sciences, Gannan Normal University, Ganzhou 341000, Jiangxi, China;Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystem, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;South China National Botanical Garden, Guangzhou 510650, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Hui

    LIU Hui

    Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystem, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;South China National Botanical Garden, Guangzhou 510650, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LUO Qi

    LUO Qi

    Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystem, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;South China National Botanical Garden, Guangzhou 510650, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIN Yixue

    LIN Yixue

    Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystem, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;South China National Botanical Garden, Guangzhou 510650, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • HOU Hao

    HOU Hao

    Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystem, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;South China National Botanical Garden, Guangzhou 510650, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YE Qing

    YE Qing

    College of Life Sciences, Gannan Normal University, Ganzhou 341000, Jiangxi, China;Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystem, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;South China National Botanical Garden, Guangzhou 510650, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LAI Wenling

    LAI Wenling

    College of Life Sciences, Gannan Normal University, Ganzhou 341000, Jiangxi, China;Key Laboratory of Nanling Plant Resources Conservation and Utilization, Ganzhou 341000, Jiangxi, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [45]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为探究富氮环境中固氮(nitrogen-fixing leguminous trees, NLT)与非固氮豆科树种(non-nitrogen-fixing leguminous trees, n-NLT)的叶片养分利用策略差异,以华南地区5种NLT植物[水黄皮(Pongamia pinnata)、大叶相思(Acacia auriculiformis)、朱樱花(Calliandra haematocephala)、海南红豆(Ormosia pinnata)、台湾相思(Acacia confusa)]和3种n-NLT植物[油楠(Sindora glabra)、中国无忧花(Saraca dives)、银珠(Peltophorum tonkinense)]为对象,测定其单位质量叶片碳(C)、氮(N)和磷(P)含量及其比值、单位面积叶片最大净光合速率(Aarea)和叶片光合氮、磷利用效率(PNUE、PPUE)等功能性状。结果表明,NLT的单位质量叶片N、P含量和Aarea均显著高于n-NLT,而两者PNUE和PPUE无显著差异;尽管两类植物单位质量叶片C含量无显著差异,但NLT的叶片C: N和C: P显著低于n-NLT。因此,这表明华南地区NLT比n-NLT具有更强的养分获取和光合能力,但叶片养分利用效率更低。

    Abstract:

    To reveal leaf nutrient use strategies of nitrogen-fixing leguminous trees (NLT) and non-nitrogen-fixing leguminous trees (n-NLT) under the nitrogen-rich environments in South China, five NLT (Pongamia pinnata, Acacia auriculiformis, Calliandra haematocephala, Ormosia pinnata, Acacia confuse) and three n-NLT (Sindora glabra, Saraca dives, Peltophorum tonkinense) were selected, the concentrations of carbon (C), nitrogen (N) and phosphorus (P) per leaf mass, leaf C: N and C: P, maximum net photosynthetic rate per leaf area (Aarea), photosynthetic nitrogen use efficiency (PNUE) and photosynthetic phosphorous use efficiency (PPUE) were measured. The results showed that N and P contents and Aarea of NLT were significantly higher than those of n-NLT, whereas their PNUE and PPUE had not significant difference. Although there was no significant difference in leaf C content between two types of species, leaf C: N and C: P of NLT were significantly lower than those of n-NLT. Therefore, these indicated that NLT in South China had stronger nutrient acquisition and photosynthetic capacity than N-NLT, but lower leaf nutrient utilization efficiency.

    参考文献
    [1] LALIBERTÉ E, TURNER B L, COSTES T, et al. Experimental assessment of nutrient limitation along a 2-million-year dune chronosequence in the south-western Australia biodiversity hotspot[J]. J Ecol, 2012, 100(3):631-642. doi:10.1111/j.1365-2745.2012.01962.x.
    [2] JIA Y L, YU G R, HE N P, et al. Spatial and decadal variations in inorganic nitrogen wet deposition in China induced by human activity[J]. Sci Rep, 2014, 4:3763. doi:10.1038/srep03763.
    [3] LU X K, MO J M, ZHANG W, et al. Effects of simulated atmospheric nitrogen deposition on forest ecosystems in China:An overview[J]. J Trop Subtrop Bot, 2019, 27(5):500-522. 鲁显楷, 莫江明, 张炜, 等. 模拟大气氮沉降对中国森林生态系统影响的研究进展[J]. 热带亚热带植物学报, 2019, 27(5):500-522. doi:10.11926/jtsb.4113.
    [4] HUANG W J, LIU J X, WANG Y P, et al. Increasing phosphorus limitation along three successional forests in southern China[J]. Plant Soil, 2013, 364(1/2):181-191. doi:10.1007/s11104-012-1355-8.
    [5] LI Y, NIU S L, YU G R. Aggravated phosphorus limitation on biomass production under increasing nitrogen loading:A meta-analysis[J]. Glob Chang Biol, 2016, 22(2):934-943. doi:10.1111/gcb.13125.
    [6] SACHS J L, QUIDES K W, WENDLANDT C E. Legumes versus rhizobia:A model for ongoing conflict in symbiosis[J]. New Phytol, 2018, 219(4):1199-1206. doi:10.1111/nph.15222.
    [7] ANDREWS M, ANDREWS M E. Specificity in legume-rhizobia symbioses[J]. Int J Mol Sci, 2017, 18(4):705. doi:10.3390/ijms18040705.
    [8] GAO D D, WANG X L, FU S L, et al. Legume plants enhance the resistance of soil to ecosystem disturbance[J]. Front Plant Sci, 2017, 8:1295. doi:10.3389/fpls.2017.01295.
    [9] GEI M G, ROZENDAAL D M A, POORTER L, et al. Legume abundance along successional and rainfall gradients in Neotropical forests[J]. Nat Ecol Evol, 2018, 2(7):1104-1111. doi:10.1038/s41559-018-0559-6.
    [10] MENGE D N L, CHAZDON R L. Higher survival drives the success of nitrogen-fixing trees through succession in Costa Rican rainforests[J]. New Phytol, 2016, 209(3):965-977. doi:10.1111/nph.13734.
    [11] RAVEN J A. The evolution of autotrophy in relation to phosphorus requirement[J]. J Exp Bot, 2013, 64(13):4023-4046. doi:10.1093/jxb/ert306.
    [12] CAO J, YAN W D, XIANG W H, et al. Characteristics of soil phosphorus in different aged stands of Chinese fir plantations in Huitong, Hunan Province[J]. Acta Ecol Sin, 2014, 34(22):6519-6527. 曹娟, 闫文德, 项文化, 等. 湖南会同不同年龄杉木人工林土壤磷素特征[J]. 生态学报, 2014, 34(22):6519-6527. doi:10.5846/stxb201404060655.
    [13] HANSEN A P, MARTIN P, BUTTERY B R, et al. Nitrate inhibition of N2 fixation in Phaseolus vulgar is L. cv. OAC Rico and a supernodulating mutant[J]. New Phytol, 1992, 122(4):611-615. doi:10.1111/j.1469-8137.1992.tb00088.x.
    [14] CHEN H, LI D J, GURMESA G A, et al. Effects of nitrogen deposition on carbon cycle in terrestrial ecosystems of China:A meta-analysis[J]. Environ Pollut, 2015, 206:352-360. doi:10.1016/j.envpol.2015.07.033.
    [15] XING K X, ZHAO M F, NIINEMETS Ü, et al. Relationships between leaf carbon and macronutrients across woody species and forest ecosystems highlight how carbon is allocated to leaf structural function[J]. Front Plant Sci, 2021, 12:674932. doi:10.3389/fpls.2021.674932.
    [16] OSNAS J L D, LICHSTEIN J W, REICH P B, et al. Global leaf trait relationships:Mass, area, and the leaf economics spectrum[J]. Science, 2013, 340(6133):741-744. doi:10.1126/science.1231574.
    [17] HIDAKA A, KITAYAMA K. Divergent patterns of photosynthetic phosphorus-use efficiency versus nitrogen-use efficiency of tree leaves along nutrient-availability gradients[J]. J Ecol, 2009, 97(5):984-991. doi:10.1111/j.1365-2745.2009.01540.x.
    [18] ZHANG J H, HE N P, LIU C C, et al. Variation and evolution of C:N ratio among different organs enable plants to adapt to N-limited environments[J]. Glob Chang Biol, 2020, 26(4):2534-2543. doi:10.1111/gcb.14973.
    [19] REICH P B, OLEKSYN J. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proc Natl Acad Sci USA, 2004, 101(30):11001-11006. doi:10.1073/pnas.0403588101.
    [20] YAN Z B, TIAN D, HAN W X, et al. An assessment on the uncertainty of the nitrogen to phosphorus ratio as a threshold for nutrient limitation in plants[J]. Ann Bot, 2017, 120(6):937-942. doi:10.1093/aob/mcx106.
    [21] AZANI N, BABINEAU M, BAILEY C D, et al. A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny:The Legume Phylogeny Working Group (LPWG)[J]. Taxon, 2017, 66(1):44-77. doi:10.12705/661.3.
    [22] ADAMS M A, BUCHMANN N, SPRENT J, et al. Crops, nitrogen, water:are legumes friend, foe, or misunderstood ally?[J]. Trends Plant Sci, 2018, 23(6):539-550. doi:10.1016/j.tplants.2018.02.009.
    [23] JENSEN E S, CARLSSON G, NIELSEN H H. Intercropping of grain legumes and cereals improves the use of soil N resources and reduces the requirement for synthetic fertilizer N:A global-scale analysis[J]. Agron Sustain Dev, 2020, 40(1):5. doi:10.1007/s13593-020-0607-x.
    [24] TOGNETTI P M, PROBER S M, BÁEZ S, et al. Negative effects of nitrogen override positive effects of phosphorus on grassland legumes worldwide[J]. Proc Natl Acad Sci USA, 2021, 118(28):e2023718118. doi:10.1073/pnas.2023718118.
    [25] TEDERSOO L, LAANISTO L, RAHIMLOU S, et al. Global database of plants with root-symbiotic nitrogen fixation:NodDB[J]. J Veg Sci, 2018, 29(3):560-568. doi:10.1111/jvs.12627.
    [26] ADAMS M A, TURNBULL T L, SPRENT J I, et al. Legumes are different:Leaf nitrogen, photosynthesis, and water use efficiency[J]. Proc Natl Acad Sci USA, 2016, 113(15):4098-4103. doi:10.1073/pnas.1523936113.
    [27] LAMBERT I, PERVENT M, LE QUERÉ A, et al. Responses of mature symbiotic nodules to the whole-plant systemic nitrogen signaling[J]. J Exp Bot, 2020, 71(16):5039-5052. doi:10.1093/jxb/eraa221.
    [28] TAYLOR B N, MENGE D N L. Light regulates tropical symbiotic nitrogen fixation more strongly than soil nitrogen[J]. Nat Plants, 2018, 4(9):655-661. doi:10.1038/s41477-018-0231-9.
    [29] WANG T, GUO J, PENG Y Q, et al. Light-induced mobile factors from shoots regulate rhizobium-triggered soybean root nodulation[J]. Science, 2021, 374(6563):65-71. doi:10.1126/science.abh2890.
    [30] TRESEDER K K, VITOUSEK P M. Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests[J]. Ecology, 2001, 82(4):946-954. doi:10.1890/0012-9658(2001)082[0946:Eosnao]2.0.Co;2.
    [31] DUFF S M G, SARATH G, PLAXTON W C. The role of acid phosphatases in plant phosphorus metabolism[J]. Physiol Plant, 1994, 90(4):791-800. doi:10.1111/j.1399-3054.1994.tb02539.x.
    [32] HOULTON B Z, WANG Y P, VITOUSEK P M, et al. A unifying framework for dinitrogen fixation in the terrestrial biosphere[J]. Nature, 2008, 454(7202):327-330. doi:10.1038/nature07028.
    [33] HIKOSAKA K, TERASHIMA I. A model of the acclimation of photosynthesis in the leaves of C3 plants to sun and shade with respect to nitrogen use[J]. Plant Cell Environ, 1995, 18(6):605-618. doi:10.1111/j.1365-3040.1995.tb00562.x.
    [34] EVANS J R. Photosynthesis and nitrogen relationships in leaves of C3 plants[J]. Oecologia, 1989, 78(1):9-19. doi:10.1007/BF00377192.
    [35] CROUS K Y, O'SULLIVAN O S, ZARAGOZA-CASTELLS J, et al. Nitrogen and phosphorus availabilities interact to modulate leaf trait scaling relationships across six plant functional types in a controlled-environment study[J]. New Phytol, 2017, 215(3):992-1008. doi:10.1111/nph.14591.
    [36] KASCHUK G, KUYPER T W, LEFFELAAR P A, et al. Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses?[J]. Soil Biol Biochem, 2009, 41(6):1233-1244. doi:10.1016/j.soilbio.2009.03.005.
    [37] HIKOSAKA K. Interspecific difference in the photosynthesis-nitrogen relationship:Patterns, physiological causes, and ecological importance[J]. J Plant Res, 2004, 117(6):481-494. doi:10.1007/s10265-004-0174-2.
    [38] TANG J C, CHENG R M, SHI Z M, et al. Fagaceae tree species allocate higher fraction of nitrogen to photosynthetic apparatus than Leguminosae in Jianfengling tropical montane rain forest, China[J]. PLoS One, 2018, 13(2):e0192040. doi:10.1371/journal.pone.0192040.
    [39] AERTS R. The advantages of being evergreen[J]. Trends Ecol Evol, 1995, 10(10):402-407. doi:10.1016/s0169-5347(00)89156-9.
    [40] PATRICK J W, BOTHA F C, BIRCH R G. Metabolic engineering of sugars and simple sugar derivatives in plants[J]. Plant Biotechnol J, 2013, 11(2):142-156. doi:10.1111/pbi.12002.
    [41] MORTIMER P E, PÉREZ-FERNÁNDEZ M A, VALENTINE A J. The role of arbuscular mycorrhizal colonization in the carbon and nutrient economy of the tripartite symbiosis with nodulated Phaseolus vulgaris[J]. Soil Biol Biochem, 2008, 40(5):1019-1027. doi:10.1016/j.soilbio.2007.11.014.
    [42] KASCHUK G, LEFFELAAR P A, GILLER K E, et al. Responses of legumes to rhizobia and arbuscular mycorrhizal fungi:A meta-analysis of potential photosynthate limitation of symbioses[J]. Soil Biol Biochem, 2010, 42(1):125-127. doi:10.1016/j.soilbio.2009.10.017.
    [43] FRIEL C A, FRIESEN M L. Legumes modulate allocation to rhizobial nitrogen fixation in response to factorial light and nitrogen manipulation[J]. Front Plant Sci, 2019, 10:1316. doi:10.3389/fpls.2019.01316.
    [44] SHENG J B, ZHANG F S, MAO D R. The ecological significance of mineral nutrition in plants:Ⅱ. The uptake, utilization and allocation of mineral nutrients by plants[J]. Eco-Agric Res, 1997, 5(2):11-14. 申建波, 张福锁, 毛达如. 植物矿质营养的生态意义Ⅱ. 植物对矿质养分的吸收、利用和分配[J]. 生态农业研究, 1997, 5(2):11-14.
    [45] WANG X, DING W L, LAMBERS H. Nodulation promotes cluster-root formation in Lupinus albus under low phosphorus conditions[J]. Plant Soil, 2019, 439(1/2):233-242. doi:10.1007/s11104-018-3638-1.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

叶楠,刘慧,罗琦,林忆雪,侯皓,叶清,赖闻玲.华南地区固氮与非固氮豆科树种叶片养分利用策略的对比研究[J].热带亚热带植物学报,2023,31(3):334~340

复制
分享
文章指标
  • 点击次数:214
  • 下载次数: 460
  • HTML阅读次数: 739
  • 引用次数: 0
历史
  • 收稿日期:2021-11-30
  • 最后修改日期:2022-03-01
  • 在线发布日期: 2023-05-24
  • 出版日期: 2023-05-20
文章二维码