广东石门台国家级自然保护区老虎山次生林群落特征
作者:
基金项目:

国家自然科学基金项目(42177289)资助


Community Characteristics of Tiger Mountain Secondary Forest in Shimentai National Nature Reserve, Guangdong
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [37]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了解在广东石门台国家级自然保护区的老虎山南坡建设的大型林冠模拟氮沉降野外控制试验平台的植被组成特征,开展了18个样方的每木调查和分析研究。结果表明,在面积0.72 hm2中有维管束植物53科86属127种;胸径(DBH)≥1.0 cm的立木有2 465株,平均密度为0.34 ind./m2,最高达25 m。群落以锥(Castanopsis chinensis)、罗伞树(Ardisia quinquegona)、木荷(Schima superba)等为主要优势种类,且以高位芽、中小型叶、革质和非全缘叶植物为主要种类组成的常绿阔叶次生林。热带-亚热带区系成分在群落中占明显优势,具有热带向亚热带过渡的特征。18个样方乔木层的Simpson指数(0.851~0.936)和Shannon-Wiener指数(3.504~4.494)相近,Pielou均匀度指数较高(0.780~1.000),但Gleason和Margalef丰富度指数差异较大(分别为3.209~7.738和16.760~40.806),样方间有10~26种共有种(Sorensen相似性系数为0.377~0.722),而灌木层则相反,物种多样性指数均变化较大,样方间只有0~10种共有种(Sorensen相似性系数为0~0.714)。因此,灌木层的密度和种类差异对群落结构的影响应充分考虑。

    Abstract:

    A large canopy simulation and nitrogen deposition field control experimental platform was established on southern slope of Tiger Mountain in Shimentai National Nature Reserve, Guangdong Province, China. To further understand the characteristics of vegetation composition at the platform, 18 plots covering a total area of 0.72 hm2 were set up. The results showed that there were 127 vascular species, belonging to 86 genera and 53 families. Furthermore, there were 2 465 individuals with diameter at breast height (DBH) ≥ 1.0 cm. The tree density was 0.34 ind./m2, and the tallest up to 25 m. The dominant species in the community was Castanopsis chinensis, Ardisia quinquegon, and Schima superba, which was a secondary evergreen broad-leaved forest consisting of phanerophytes, medium-and small-leaf, leathery, and unentire leaf as main species. The tropical-subtropical floristic elements were dominant in the community, with the characteristics of transition from the tropical to subtropical. Among 18 plots at tree layer, the Simpson index (0.851-0.936) and Shannon-Wiener index (3.504-4.494) were similar; the Pielou's evenness index was high (0.780-1.000); and the Gleason and Margalef richness indexes were rather variable (3.209-7.738 and 16.760-40.806, respectively). The plots shared 10-26 species with Sorensen similarity coefficient of 0.377-0.722. On the contrary, in shrub layers, the above indexes all varied greatly, and only 0-10 common species among plots with Sorensen similarity coefficient of 0-0.714. Therefore, the effect of shrub layer density and species difference on community structure should be considered.

    参考文献
    [1] ZHANG J Q. Comprehensive Investigation Report of Shimentai National Nature Reserve in Guangdong Province[M]. Wuhan:Huazhong University of Science and Technology Press, 2017:1-101.[张金泉. 广东石门台国家级自然保护区综合科学考察报告[M]. 武汉:华中科技大学出版社, 2017:1-101.]
    [2] XU X H, ZHONG Z C, WANG L Z, et al. The plant community of Yingde Huashui Mountain, Guangdong Province[J]. Chin J Plant Ecol, 1958, 2(1):1-59.[徐祥浩, 钟章成, 王灵昭, 等. 广东英德滑水山的植物群落[J]. 植物生态学报, 1958, 2(1):1-59.]
    [3] Zhang Hongda Anthology Editotial Group. Anthology of Zhang Hong Da[M]. Guangzhou:Sun Yat-Sen University Press, 1995:676-714.[《张宏达文集》编辑组. 张宏达文集[M]. 广州:中山大学出版社, 1995:676-714.]
    [4] XU Y Q. The important signicance of establishing nature reserve in Yingde municipality[J]. Ecol Sci, 1998, 17(2):107-110.[徐燕千. 建立英德市石门台自然保护区的重大意义[J]. 生态科学, 1998, 17(2):107-110.]
    [5] SU Z Y, CHEN B G, WU D R. Vegetation types and community structure of Shimentai Nature Reserve, Yingde, Guangdong[J]. J S China Agric Univ, 2002, 23(1):58-62.[苏志尧, 陈北光, 吴大荣. 广东英德石门台自然保护区的植被类型和群落结构[J]. 华南农业大学学报, 2002, 23(1):58-62. doi:10.3969/j.issn.1001-411X.2002.01. 017.]
    [6] CHEN H F, YAN Y H, XING F W, et al. A study on characteristics of Ixonanthes chinensis-Castanopsis eyrei community in Shimentai Nature Reserve, Guangdong[J]. Guihaia, 2003, 23(6):488-494.[陈红锋, 严岳鸿, 邢福武, 等. 广东石门台自然保护区粘木-甜锥群落特征研究[J]. 广西植物, 2003, 23(6):488-494. doi:10.3969/j.issn.1000-3142. 2003.06.002.]
    [7] CHEN H F, YAN Y H, XING F W, et al. Survey on original vegetation in Shimentai Nature Reserve, Guangdong[J]. J S China Agric Univ (Nat Sci), 2003, 24(2):22-26.[陈红锋, 严岳鸿, 邢福武, 等. 广东石门台自然保护区原生植被的调查研究[J]. 华南农业大学学报(自然科学版), 2003, 24(2):22-26. doi:10.3969/j.issn.1001-411X.2003.02. 007.]
    [8] MIAO S Y, WANG W T, ZENG Y J, et al. Basic characteristics of Pinus kwangtungensis community in Shimentai Nature Reserve, Guangdong[J]. Guihaia, 2004, 24(5):390-395.[缪绅裕, 王伟彤, 曾阳金, 等. 广东石门台自然保护区广东松群落的基本特征[J]. 广西植物, 2004, 24(5):390-395. doi:10.3969/j.issn.1000-3142.2004.05. 002.]
    [9] LI Y Q, HUANG L S, MIAO S Y, et al. Species diversity of the forest vegetation in Shimentai Natural Reserve, Guangdong[J]. J Fujian For Sci Technol, 2018, 45(3):13-18.[李远球, 黄林生, 缪绅裕, 等. 广东石门台自然保护区森林植被物种多样性[J]. 福建林业科技, 2018, 45(3):13-18. doi:10.13428/j.cnki.fjlk.2018.03.003.]
    [10] HUANG L S, LI Y Q, DAI K Y, et al. Dominant populations and their age structures of forest vegetation in Shimentai, Guangdong[J]. Subtrop Plant Sci, 2018, 47(2):144-148.[黄林生, 李远球, 戴克元, 等. 广东石门台森林植被的优势种群及其年龄结构[J]. 亚热带植物科学, 2018, 47(2):144-148. doi:10.3969/j.issn.1009-7791.2018.02.010.]
    [11] ZHANG W, SHEN W J, ZHU S D, et al. CAN canopy addition of nitrogen better illustrate the effect of atmospheric nitrogen deposition on forest ecosystem?[J]. Sci Rep, 2015, 5(1):11245. doi:10.1038/srep11245.
    [12] Editorial Board of the Vegetation of China. Vegetation of China[M]. Beijing:Science Press, 1980:3-1144.[中国植被编辑委员会. 中国植被[M]. 北京:科学出版社, 1980:3-1144.]
    [13] SONG Y C, CHEN X Y, WANG X H. Studies on evergreen broad-leaved forests of China:A retrospect and prospect[J]. J E China Norm Univ (Nat Sci), 2005(1):1-8.[宋永昌, 陈小勇, 王希华. 中国常绿阔叶林研究的回顾与展望[J]. 华东师范大学学报(自然科学版), 2005(1):1-8. doi:10.3969/j.issn.1000-5641.2005.01.001.]
    [14] WANG X H. Phytogeography and species diversity of typical evergreen broad-leaved forest in China[D]. Shanghai:East China Normal University, 2006.[王希华. 中国典型常绿阔叶林植物地理与物种多样性研究[D]. 上海:华东师范大学, 2006.]
    [15] MI X C, FENG G, ZHANG J, et al. Review on biodiversity science in China[J]. Bull Chin Acad Sci, 2021, 36(4):384-398.[米湘成, 冯刚, 张健, 等. 中国生物多样性科学研究进展评述[J]. 中国科学院院刊, 2021, 36(4):384-398. doi:10.16418/j.issn.1000-3045.20210307002.]
    [16] MA K P, GUO Q H. Progress and recent trends of vegetation ecology in China[J]. Sci Sin Vitae, 2021, 51(3):215-218.[马克平, 郭庆华. 中国植被生态学研究的进展和趋势[J]. 中国科学:生命科学, 2021, 51(3):215-218. doi:10.1360/SSV-2021-0010.]
    [17] LOREAU M, NAEEM S, INCHAUSTI P, et al. Biodiversity and ecosystem functioning:Current knowledge and future challenges[J]. Science, 2001, 294(5543):804-808. doi:10.1126/science.1064088.
    [18] CADOTTE M W, CARSCADDEN K, MIROTCHNICK N. Beyond species:Functional diversity and the maintenance of ecological pro-cesses and services[J]. J Appl Ecol, 2011, 48(5):1079-1087. doi:10. 1111/j.1365-2664.2011.02048.x.
    [19] MCINTYRE S, LAVOREL S, LANDSBERG J, et al. Disturbance response in vegetation:Towards a global perspective on functional traits[J]. J Veg Sci, 1999, 10(5):621-630. doi:10.2307/3237077.
    [20] CORNELISSEN J H C, LAVOREL S, GARNIER E, et al. A handbook of protocols for standardized and easy measurement of plant functional traits worldwide[J]. Aust J Bot, 2003, 51(4):335-380. doi:10.1071/BT02124.
    [21] MENG T T, NI J, WANG G H. Plant functional traits, environments and ecosystem functioning[J]. J Plant Ecol, 2007, 31(1):150-165.[孟婷婷, 倪健, 王国宏. 植物功能性状与环境和生态系统功能[J]. 植物生态学报, 2007, 31(1):150-165. doi:10.17521/cjpe.2007.0019.]
    [22] LIU X J, MA K P. Plant functional traits:Concepts, applications and future directions[J]. Sci Sin Vitae, 2015, 45(4):325-339.[刘晓娟, 马克平. 植物功能性状研究进展[J]. 中国科学:生命科学, 2015, 45(4):325-339. doi:10.1360/N052014-00244.]
    [23] GRUBER N, GALLOWAY J N. An earth-system perspective of the global nitrogen cycle[J]. Nature, 2008, 451(7176):293-296. doi:10. 1038/nature06592.
    [24] SULLIVAN B W, SMITH W K, TOWNSEND A R, et al. Spatially robust estimates of biological nitrogen (N) fixation imply substantial human alteration of the tropical N cycle[J]. Proc Natl Acad Sci USA, 2014, 111(22):8101-8106. doi:10.1073/pnas.1320646111.
    [25] CLARK C M, TILMAN D. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands[J]. Nature, 2008, 451(7179):712-715. doi:10.1038/nature06503.
    [26] CONDIT R. Tropical Forest Census Plots:Methods and Results from Barro Colorado Island Panama and a Comparison with Other Plots[M]. New York:Springer, 1998:1-181.
    [27] YE W H, CAO H L, HUANG Z L, et al. Community structure of a 20 hm2 lower subtropical evergreen broadleaved forest plot in Dinghu-shan, China[J]. J Plant Ecol, 2008, 32(2):274-286.[叶万辉, 曹洪麟, 黄忠良, 等. 鼎湖山南亚热带常绿阔叶林20公顷样地群落特征研究[J]. 植物生态学报, 2008, 32(2):274-286. doi:10.3773/j.issn. 1005-264x.2008.02.005.]
    [28] DONG M. Survey, Observation and Analysis of Terrestrial Biocom-munities[M]. Beijing:Standards Press of China, 1996:1-23.[董鸣. 陆地生物群落调查观测与分析[M]. 北京:中国标准出版社, 1996:1-23.]
    [29] QU Z X, WEN Z W, ZHU K G. An analytical study of the forest of the spirit valley, Nanking[J]. Acta Bot Sin, 1952, 1(1):18-49.[曲仲湘, 文振旺, 朱克贵. 南京灵谷寺森林现况的分析[J]. 植物学报, 1952, 1(1):18-49.]
    [30] WU D X, ZHANG L, SONG C Y, et al. Protocols for Standard Biological Observation and Measurement in Terrestrial Ecosystems[M]. Beijing:China Environmental Science Press, 2019:34-508.[吴冬秀, 张琳, 宋创业, 等. 陆地生态系统生物观测指标与规范[M]. 北京:中国环境出版集团, 2019:34-508.]
    [31] MA K P, LIU C R, LIU Y M. The methods of measuring community biodiversity:II. Measurement of β diversity[J]. Chin Biodiv, 1995, 3(1):38-43.[马克平, 刘灿然, 刘玉明. 生物群落多样性的测度方法:II. β多样性的测度方法[J]. 生物多样性, 1995, 3(1):38-43.]
    [32] WU Z Y. The area types of Chinese genera of seed plants[J]. Acta Bot Yunnan, 1991, 13(S4):1-139.[吴征镒. 中国种子植物属的分布区类型[J]. 云南植物研究, 1991, 13(S4):1-139.]
    [33] Raunkiaer C. The Life Forms of Plants and Statistical Plant[M]. Oxford:Geography Clarendon Press, 1934:1-632.
    [34] DAI W T, CHEN W L, MIAO S Y, et al. Analysis on the composition and structure of dominant species within an evergreen broadleaved forest in Qingzhangshan, Nanxiong[J]. For Environ Sci, 2017, 33(2):8-13.[戴文坛, 陈伟霖, 缪绅裕, 等. 南雄青嶂山常绿阔叶林优势物种组成与结构分析[J]. 林业与环境科学, 2017, 33(2):8-13. doi:10.3969/j.issn.1006-4427.2017.02.002.]
    [35] WU Z H, WANG Z, LUAN F C, et al. Community composition and floral characteristics of the Chebaling 20 hm2 forest dynamic plot in a mid-subtropical evergreen broad-leaved forest[J]. For Environ Sci, 2021, 37(3):86-91.[吴智宏, 王梓, 栾福臣, 等. 车八岭20 hm2中亚热带常绿阔叶林监测样地群落物种组成和区系特征[J]. 林业与环境科学, 2021, 37(3):86-91.]
    [36] CHEN Z H, LI M G, LÜ X H, et al. A study on the forest communities in Natural Reserve of Nankunshan, Guangdong[J]. Ecol Sci, 1983, 2(1):18-29.[陈章和, 李鸣光, 吕小红, 等. 广东南昆山自然保护区森林群落[J]. 生态科学, 1983, 2(1):18-29.]
    [37] ZHANG J Q. Vegetation characters of the Ruyang Babao Mountain Nature Reserve, Guangdong Province[J]. Ecol Sci, 1993, 12(1):39-124.[张金泉. 广东乳阳八宝山自然保护区的植被特点[J]. 生态科学, 1993, 12(1):39-124.]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

饶兴权,曾阳金,李远球,曹洪麟,刘占锋,蔡锡安.广东石门台国家级自然保护区老虎山次生林群落特征[J].热带亚热带植物学报,2023,31(1):10~20

复制
分享
文章指标
  • 点击次数:267
  • 下载次数: 552
  • HTML阅读次数: 486
  • 引用次数: 0
历史
  • 收稿日期:2021-11-05
  • 最后修改日期:2022-05-09
  • 在线发布日期: 2023-02-24
  • 出版日期: 2023-01-20
文章二维码