硅提高植物抗旱性的生理机制研究进展
作者:
基金项目:

广东省林业科技创新项目(2017KJCX033); 国家自然科学基金项目(31600307)资助


Research Progress on Physiological Mechanism of Silicon on Enhancing Plant Drought Resistance
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [89]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    干旱作为限制作物产量和品质的主要非生物胁迫之一,对全球社会、经济和生态造成巨大损失。在全球气候变化背景下,提高植物抗旱性的重要性日益突显。硅能够提高植物的抗旱性:外源硅的施用可以影响气孔导度,改变蒸腾速率,改善植物水分状况;通过调节气孔动力学、合成光合色素,促进光化学反应,从而改善光合作用;此外硅可通过渗透调节以平衡植物对矿质元素的吸收,以及调节抗氧化防御系统,减轻植物在干旱胁迫中的氧化损伤。总结了硅对干旱胁迫下植物水分利用、光合作用、矿质元素吸收、抗氧化系统、植物激素代谢等方面的作用及相关生理机制。建议未来从复合逆境胁迫、低硅积累植物等方面进一步揭示硅提高植物抗旱性的作用机制,从而为农林生态系统合理利用硅素来提高生产效率提供科学依据和理论基础。

    Abstract:

    In the context of global climate change, drought has become one of the major abiotic stresses limiting crop yield and quality worldwide, which causes huge losses to the global society, economy and ecology. Hence, it is increasingly critical to enhance the drought resistance of plants. Numerous studies at domestic and abroad have confirmed that silicon can promote plant drought resistance. For example, the application of exogenous silicon can improve water status of plants by affecting the stomatal conductance and changing the transpiration rate; silicon can also improve photosynthesis by regulating stomatal dynamics, synthesizing photosynthetic pigments and promoting photochemical reactions; in addition, silicon can not only balance the absorption and utilization of minerals by plants through osmotic adjustment but also regulate the antioxidant defense system to reduce the oxidative damage of plants under drought stress. Here, we systematically summarize the effects of silicon on plant water utilization, photosynthesis, mineral absorption, antioxidant systems, plant hormone metabolism and related physiological mechanisms under drought stress. It was suggested that the mechanism by which silicon enhances drought resistance of plants should be revealed from the aspects of combined stress and low silicon accumulating plants in the future, so as to provide a scientific basis and lay a theoretical foundation for the rational use of silicon in agroforestry ecosystems to improve production efficiency.

    参考文献
    [1] KESHAVARZ M, MALEKSAEIDI H, KARAMI E. Livelihood vulnerability to drought: A case of rural Iran [J]. Int J Disaster Risk Reduct, 2017, 21: 223–230. doi: 10.1016/j.ijdrr.2016.12.012.
    [2] VANGELIS H, SPILIOTIS M, TSAKIRIS G. Drought severity assess- ment based on bivariate probability analysis [J]. Water Resour Manag, 2011, 25(1): 357–371. doi: 10.1007/s11269-010-9704-y.
    [3] WANG H J, CHEN Y N, PAN Y P. Characteristics of drought in the arid region of northwestern China [J]. Climate Res, 2015, 62(2): 99– 113. doi: 10.3354/cr01266.
    [4] YE T, SHI P J, WANG J A, et al. China’s drought disaster risk manage- ment: Perspective of severe droughts in 2009—2010 [J]. Int J Disaster Risk Sci, 2012, 3(2): 84–97. doi: 10.1007/s13753-012-0009-z.
    [5] CHEN W, YAO X Q, CAI K Z, et al. Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption [J]. Biol Trace Elem Res, 2011, 142(1): 67–76. doi: 10.1007/s12011-010-8742-x.
    [6] KAYA C, TUNA L, HIGGS D. Effect of silicon on plant growth and mineral nutrition of maize grown under water-stress conditions [J]. J Plant Nutr, 2006, 29(8): 1469–1480. doi: 10.1080/01904160600837238.
    [7] XU L, ISLAM F, ALI B, et al. Silicon and water-deficit stress differ- rentially modulate physiology and ultrastructure in wheat (Triticum aestivum L.) [J]. 3 Biotechnol, 2017, 7(4): 273. doi: 10.1007/s13205- 017-0904-5.
    [8] MA J F, YAMAJI N, MITANI-UENO N. Transport of silicon from roots to panicles in plants [J]. Proc Jpn Acad Ser B Phys Biol Sci, 2011, 87(7): 377–385. doi: 10.2183/pjab.87.377.
    [9] EPSTEIN E. The anomaly of silicon in plant biology [J]. Proc Natl Acad Sci USA, 1994, 91(1): 11–17. doi: 10.1073/pnas.91.1.11.
    [10] ZHU Y X, GONG H J. Beneficial effects of silicon on salt and drought tolerance in plants [J]. Agron Sustain Dev, 2014, 34(2): 455–472. doi: 10.1007/s13593-013-0194-1.
    [11] TEIXEIRA N C, VALIM J O S, OLIVEIRA M G A, et al. Combined effects of soil silicon and drought stress on host plant chemical and ultrastructural quality for leaf-chewing and sap-sucking insects [J]. J Agron Crop Sci, 2020, 206(2): 187–201. doi: 10.1111/jac.12386.
    [12] LI Z C, SONG Z L, YAN Z F, et al. Silicon enhancement of estimated plant biomass carbon accumulation under abiotic and biotic stresses: A meta-analysis [J]. Agron Sustain Dev, 2018, 38(3): 26. doi: 10.1007/ s13593-018-0496-4.
    [13] YIN L N, WANG S W, LIU P, et al. Silicon-mediated changes in polyamine and 1-aminocyclopropane-1-carboxylic acid are involved in silicon-induced drought resistance in Sorghum bicolor L. [J]. Plant Physiol Biochem, 2014, 80: 268–277. doi: 10.1016/j.plaphy.2014.04.014.
    [14] CAO B L, MA Q, XU K. Silicon restrains drought-induced ROS accumulation by promoting energy dissipation in leaves of tomato [J]. Protoplasma, 2020, 257(2): 537–547. doi: 10.1007/s00709-019-01449-0.
    [15] WANG Y W, ZHANG B B, JIANG D X, et al. Silicon improves photo- synthetic performance by optimizing thylakoid membrane protein components in rice under drought stress [J]. Environ Exp Bot, 2019, 158: 117–124. doi: 10.1016/j.envexpbot.2018.11.022.
    [16] PATEL M, FATNANI D, PARIDA A K. Silicon-induced mitigation of drought stress in peanut genotypes (Arachis hypogaea L.) through ion homeostasis, modulations of antioxidative defense system, and meta- bolic regulations [J]. Plant Physiol Biochem, 2021, 166: 290–313. doi: 10.1016/j.plaphy.2021.06.003.
    [17] SONG X P, VERMA K K, TIAN D D, et al. Exploration of silicon functions to integrate with biotic stress tolerance and crop improve- ment [J]. Biol Res, 2021, 54(1): 19. doi: 10.1186/s40659-021-00344-4.
    [18] LIU M D, ZHANG Y L. Advance in the study of silicon fertility in paddy fields [J]. Chin J Soil Sci, 2001, 32(4): 187–192. doi: 10.3321/j. issn:0564-3945.2001.04.013. 刘鸣达, 张玉龙. 水稻土硅素肥力的研究现状与展望 [J]. 土壤通报, 2001, 32(4): 187–192. doi: 10.3321/j.issn:0564-3945.2001.04.013.
    [19] YAN G C, NIKOLIC M, YE M J, et al. Silicon acquisition and accumulation in plant and its significance for agriculture [J]. J Integr Agric, 2018, 17(10): 2138–2150. doi: 10.1016/S2095-3119(18)62037-4.
    [20] LIU L J, HUANG Z T, MENG C F, et al. Research progress on soil silicon in different ecosystems in China [J]. Acta Pedol Sin, 2021, 58(1): 31–41. doi: 10.11766/trxb202005310409. 刘丽君, 黄张婷, 孟赐福, 等. 中国不同生态系统土壤硅的研究进展 [J]. 土壤学报, 2021, 58(1): 31–41. doi: 10.11766/trxb202005310409.
    [21] ZANG H L, ZHANG X P, HE D Y. On the silicon supplying capacity of paddy soils in south China [J]. Acta Pedol Sin, 1982, 19(2): 131– 140. 臧惠林, 张效朴, 何电源. 我国南方水稻土供硅能力的研究 [J]. 土壤学报, 1982, 19(2): 131–140.
    [22] NANAYAKKARA U N, UDDIN W, DATNOFF L E. Application of silicon sources increases silicon accumulation in perennial ryegrass turf on two soil types [J]. Plant Soil, 2008, 303(1/2): 83–94. doi: 10.1007/s 11104-007-9488-x.
    [23] HODSON M J, WHITE P J, MEAD A, et al. Phylogenetic variation in the silicon composition of plants [J]. Ann Bot, 2005, 96(6): 1027–1046. doi: 10.1093/aob/mci255.
    [24] LIANG Y C, ZHANG Y C, MA T S. Silicon nutrition in plants [J]. Soil Sci Res Dev, 1993, 21(3): 7–14. 梁永超, 张永春, 马同生. 植物的硅素营养 [J]. 土壤学进展, 1993, 21(3): 7–14.
    [25] GUNTZER F, KELLER C, MEUNIER J D. Benefits of plant silicon for crops: A review [J]. Agron Sustain Dev, 2012, 32(1): 201–213. doi: 10.1007/s13593-011-0039-8.
    [26] THAKRAL V, BHAT J A, KUMAR N, et al. Role of silicon under contrasting biotic and abiotic stress conditions provides benefits for climate smart cropping [J]. Environ Exp Bot, 2021, 189: 104545. doi: 10.1016/j.envexpbot.2021.104545.
    [27] CHEN D Q, WANG S W, YIN N, et al. How does silicon mediate plant water uptake and loss under water deficiency? [J]. Front Plant Sci, 2018, 9: 281. doi: 10.3389/fpls.2018.00281.
    [28] SAJA-GARBARZ D, OSTROWSKA A, KACZANOWSKA K, et al. Accumulation of silicon and changes in water balance under drought stress in Brassica napus var. napus L. [J]. Plants, 2021, 10(2): 280–293. doi: 10.3390/plants10020280.
    [29] FAROOQ M, WAHID A, KOBAYASHI N, et al. Plant drought stress: Effects, mechanisms and management [J]. Agron Sustain Dev, 2009, 29(1): 185–212. doi: 10.1051/agro:2008021.
    [30] MING D F, PEI Z F, NAEEM M S, et al. Silicon alleviates PEG- induced water-deficit stress in upland rice seedlings by enhancing osmotic adjustment [J]. J Agron Crop Sci, 2012, 198(1): 14–26. doi: 10. 1111/j.1439-037X.2011.00486.x.
    [31] GONG H J, CHEN K M. The regulatory role of silicon on water relations, photosynthetic gas exchange, and carboxylation activities of wheat leaves in field drought conditions [J]. Acta Physiol Plant, 2012, 34(4): 1589–1594. doi: 10.1007/s11738-012-0954-6.
    [32] AHMED M, FAYYAZ-UL-HASSEN, QADEER U, et al. Silicon application and drought tolerance mechanism of Sorghum [J]. Afr J Agric Res, 2011, 6(3): 594–607. doi: 10.5897/AJAR10.626.
    [33] BEZERRA B K L, LIMA G P P, DOS REIS A R, et al. Physiological and biochemical impacts of silicon against water deficit in sugarcane [J]. Acta Physiol Plant, 2019, 41(12): 189–200. doi: 10.1007/s11738- 019-2980-0.
    [34] GAO X P, ZOU C Q, WANG L J, et al. Silicon decreases transpiration rate and conductance from stomata of maize plants [J]. J Plant Nutr, 2006, 29(9): 1637–1647. doi: 10.1080/01904160600851494.
    [35] KELLER C, RIZWAN M, DAVIDIAN J C, et al. Effect of silicon on wheat seedlings (Triticum turgidum L.) grown in hydroponics and exposed to 0 to 30 µM Cu [J]. Planta, 2015, 241(4): 847–860. doi: 10.1007/s00425-014-2220-1.
    [36] ZHANG G Q, XU K, WANG X C, et al. Effects of silicon on exchange characteristics of H2O and CO2 in ginger leaves [J]. Chin J Appl Ecol, 2008, 19(8): 1702–1707. 张国芹, 徐坤, 王兴翠, 等. 硅对生姜叶片水、二氧化碳交换特性的影响 [J]. 应用生态学报, 2008, 19(8): 1702–1707.
    [37] AHMED M, ASIF M, HASSAN F U. Augmenting drought tolerance in sorghum by silicon nutrition [J]. Acta Physiol Plant, 2014, 36(2): 473– 483. doi: 10.1007/s11738-013-1427-2.
    [38] HATTORI T, INANAGA S, ARAKI H, et al. Application of silicon enhanced drought tolerance in Sorghum bicolor [J]. Physiol Plant, 2005, 123(4): 459–466. doi: 10.1111/j.1399-3054.2005.00481.x.
    [39] SONOBE K, HATTORI T, AN P, et al. Diurnal variations in photo- synthesis, stomatal conductance and leaf water relation in sorghum grown with or without silicon under water stress [J]. J Plant Nut, 2009, 32(3): 433–442. doi: 10.1080/01904160802660743.
    [40] KUHLA J, PAUSCH J, SCHALLER J. Effect on soil water availability, rather than silicon uptake by plants, explains the beneficial effect of silicon on rice during drought [J]. Plant Cell Environ, 2021, 44(10): 3336–3346. doi: 10.1111/pce.14155.
    [41] ZHANG W J, YU X X, LI M, et al. Silicon promotes growth and root yield of Glycyrrhiza uralensis under salt and drought stresses through enhancing osmotic adjustment and regulating antioxidant metabolism [J]. Crop Prot, 2018, 107: 1–11. doi: 10.1016/j.cropro.2018.01.005.
    [42] SHI Y, ZHANG Y, HAN W H, et al. Silicon enhances water stress tole- rance by improving root hydraulic conductance in Solanum lycoper- sicum L. [J]. Front Plant Sci, 2016, 7: 196. doi: 10.3389/fpls.2016.00196.
    [43] CAO B L, WANG L L, GAO S, et al. Silicon-mediated changes in radial hydraulic conductivity and cell wall stability are involved in silicon-induced drought resistance in tomato [J]. Protoplasma, 2017, 254(6): 2295–2304. doi: 10.1007/s00709-017-1115-y.
    [44] HADDAD R, KAMANGAR A. The ameliorative effect of silicon and potassium on drought stressed grape (Vitis vinifera L.) leaves [J]. Iran J Genet Plant Breed, 2015, 4(2): 48–58.
    [45] HASANUZZAMAN M, NAHAR K, ANEE T I, et al. Silicon-mediated regulation of antioxidant defense and glyoxalase systems confers drought stress tolerance in Brassica napus L. [J]. S Afr J Bot, 2018, 115: 50–57. doi: 10.1016/j.sajb.2017.12.006.
    [46] PEI Z F, MING D F, LIU D, et al. Silicon improves the tolerance to water-deficit stress induced by polyethylene glycol in wheat (Triticum aestivum L.) seedlings [J]. J Plant Growth Regul, 2010, 29(1): 106–115. doi: 10.1007/s00344-009-9120-9.
    [47] CHAVES M M. Effects of water deficits on carbon assimilation [J]. J Exp Bot, 1991, 42(1): 1–16. doi: 10.1093/jxb/42.1.1.
    [48] MAGHSOUDI K, EMAM Y, PESSARAKLI M. Effect of silicon on photosynthetic gas exchange, photosynthetic pigments, cell membrane stability and relative water content of different wheat cultivars under drought stress conditions [J]. J Plant Nutri, 2016, 39(7): 1001–1015. doi: 10.1080/01904167.2015.1109108.
    [49] KANG J J, ZHAO W Z, ZHU X. Silicon improves photosynthesis and strengthens enzyme activities in the C3 succulent xerophyte Zygophy- llum xanthoxylum under drought stress [J]. J Plant Physiol, 2016, 199: 76–86. doi: 10.1016/j.jplph.2016.05.009.
    [50] HAMAYUN M, SOHN E Y, KHAN S A, et al. Silicon alleviates the adverse effects of salinity and drought stress on growth and endo- genous plant growth hormones of soybean (Glycine max L.) [J]. Pak J Bot, 2010, 42(3): 1713–1722. doi: 10.3417/2008072.
    [51] ZHANG W J, ZHANG X J, LANG D Y, et al. Silicon alleviates salt and drought stress of Glycyrrhiza uralensis plants by improving photo- synthesis and water status [J]. Biol Plant, 2020, 64(1): 302–313. doi: 10.32615/bp.2019.136.
    [52] ZHANG P Y, GAO R G, YANG F J, et al. Effects of silicon on photosynthetic characteristics and activity of antioxidant enzymes in continuous-cropped cucumber seedlings [J]. Chin J Appl Ecol, 2014, 25(6): 1733–1738. doi: 10.13287/j.1001-9332.20140409.005. 张平艳, 高荣广, 杨凤娟, 等. 硅对连作黄瓜幼苗光合特性和抗氧化酶活性的影响 [J]. 应用生态学报, 2014, 25(6): 1733–1738. doi: 10.13287/j.1001-9332.20140409.005.
    [53] GUNES A, KADIOGLU Y K, PILBEAM D J, et al. Influence of silicon on sunflower cultivars under drought stress, II: Essential and nonessential element uptake determined by polarized energy dispersive x-ray fluorescence [J]. Commun Soil Sci Plant Anal, 2008, 39(13/14): 1904–1927. doi: 10.1080/00103620802134719.
    [54] AHMAD M, EL-SAEID M H, AKRAM M A, et al. Silicon fertilization: A tool to boost up drought tolerance in wheat (Triticum aestivum L.) crop for better yield [J]. J Plant Nut, 2016, 39(9): 1283–1291. doi: 10. 1080/01904167.2015.1105262.
    [55] ZHU J K. Salt and drought stress signal transduction in plants [J]. Annu Rev Plant Biol, 2002, 53(1): 247–273. doi: 10.1146/annurev. arplant.53.091401.143329.
    [56] LIANG Y C. Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress [J]. Plant Soil, 1999, 209(2): 217–224. doi: 10.1023/A:1004526604913.
    [57] ETESAMI H, JEONG B R. Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants [J]. Ecotoxicol Environ Safe, 2018, 147: 881–896. doi: 10.1016/ j.ecoenv.2017.09.063.
    [58] DEHGHANIPOODEH S, GHOBADI C, BANINASAB B, et al. Effect of silicon on growth and development of strawberry under water deficit conditions [J]. Hort Plant J, 2018, 4(6): 226–232. doi: 10.1016/j.hpj. 2018.09.004.
    [59] GUERRIERO G, HAUSMAN J F, LEGAY S. Silicon and the plant extracellular matrix [J]. Front Plant Sci, 2016, 7: 463. doi: 10.3389/ fpls.2016.00463.
    [60] HU A Y, XU S N, QIN D N, et al. Role of silicon in mediating pho- sphorus imbalance in plants [J]. Plants, 2021, 10(1): 51. doi: 10.3390/ plants10010051.
    [61] DETMANN K C, ARAÚJO W L, MARTINS S C V, et al. Silicon nutrition increases grain yield, which, in turn, exerts a feed-forward stimulation of photosynthetic rates via enhanced mesophyll conduc- tance and alters primary metabolism in rice [J]. New Phytol, 2012, 196 (3): 752–762. doi: 10.1111/j.1469-8137.2012.04299.x.
    [62] ENEJI A E, INANAGA S, MURANAKA S, et al. Growth and nutrient use in four grasses under drought stress as mediated by silicon ferti- lizers [J]. J Plant Nutr, 2008, 31(2): 355–365. doi: 10.1080/01904160 801894913.
    [63] PARVEEN A, LIU W, HUSSAIN S, et al. Silicon priming regulates morpho-physiological growth and oxidative metabolism in maize under drought stress [J]. Plants, 2019, 8(10): 431. doi: 10.3390/plants8100431.
    [64] SONOBE K, HATTORI T, AN P, et al. Effect of silicon application on sorghum root responses to water stress [J]. J Plant Nutr, 2010, 34(1): 71–82. doi: 10.1080/01904167.2011.531360.
    [65] HUSSAIN H A, HUSSAIN S, KHALIQ A, et al. Chilling and drought stresses in crop plants: Implications, cross talk, and potential manage- ment opportunities [J]. Front Plant Sci, 2018, 9: 393. doi: 10.3389/ fpls.2018.00393.
    [66] MØLLER I M, JENSEN P E, HANSSON A. Oxidative modifications to cellular components in plants [J]. Annu Rev Plant Biol, 2007, 58: 459–481. doi: 10.1146/annurev.arplant.58.032806.103946.
    [67] MA D Y, SUN D X, WANG C Y, et al. Silicon application alleviates drought stress in wheat through transcriptional regulation of multiple antioxidant defense pathways [J]. J Plant Growth Regul, 2016, 35(1): 1–10. doi: 10.1007/s00344-015-9500-2.
    [68] RANGANI J, PANDA A, PATEL M, et al. Regulation of ROS through proficient modulations of antioxidative defense system maintains the structural and functional integrity of photosynthetic apparatus and con- fers drought tolerance in the facultative halophyte Salvadora persica L. [J]. J Photochem Photobiol B Biol, 2018, 189: 214–233. doi: 10.1016/j. jphotobiol.2018.10.021.
    [69] GONG H J, ZHU X Y, CHEN K M, et al. Silicon alleviates oxidative damage of wheat plants in pots under drought [J]. Plant Sci, 2005, 169 (2): 313–321. doi: 10.1016/j.plantsci.2005.02.023.
    [70] KIM Y H, KHAN A L, WAQAS M, et al. Silicon regulates antioxidant activities of crop plants under abiotic-induced oxidative stress: A review [J]. Front Plant Sci, 2017, 8: 510. doi: 10.3389/fpls.2017.00510.
    [71] MA C C, LI Q F, GAO Y B, et al. Effects of silicon application on drought resistance of cucumber plants [J]. Soil Sci Plant Nutr, 2004, 50(5): 623–632. doi: 10.1080/00380768.2004.10408520.
    [72] GONG H J, CHEN K M, ZHAO Z G, et al. Effects of silicon on defense of wheat against oxidative stress under drought at different developmental stages [J]. Biol Plant, 2008, 52(3): 592–596. doi: 10. 1007/s10535-008-0118-0.
    [73] YOSHIDA T, OBATA T, FEIL R, et al. The role of abscisic acid signaling in maintaining the metabolic balance required for Arabidopsis growth under nonstress conditions [J]. Plant Cell, 2019, 31(1): 84–105. doi: 10.1105/tpc.18.00766
    [74] VERMA K K, SINGH R K, SONG Q Q, et al. Silicon alleviates drought stress of sugarcane plants by improving antioxidant responses [J]. Biomed J Sci Tech Res, 2019, 17(1): 12580–12586. doi: 10.26717/ BJSTR.2019.17.002957.
    [75] DONG T X, CAI K Z, ZENG R S. Effects of methyl jasmonate (MeJA) on photosynthetic traits of rice seedlings under drought stress [J]. Ecol Environ Sci, 2009, 18(5): 1872–1876. doi: 10.3969/j.issn.1674-5906. 2009.05.051. 董桃杏, 蔡昆争, 曾任森. 茉莉酸甲酯(MeJA)对干旱胁迫下水稻幼苗光合作用特性的影响 [J]. 生态环境学报, 2009, 18(5): 1872–1876. doi: 10.3969/j.issn.1674-5906.2009.05.051.
    [76] JAYAKANNAN M, BOSE J, BABOURINA O, et al. Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel [J]. J Exp Bot, 2013, 64(8): 2255–2268. doi: 10.1093/jxb/ert085.
    [77] AKTER N, ISLAM M R, KARIM M A, et al. Alleviation of drought stress in maize by exogenous application of gibberellic acid and cytokinin [J]. J Crop Sci Biotechnol, 2014, 17(1): 41–48. doi: 10.1007/ s12892-013-0117-3.
    [78] LIAN H L, YU X, YE Q, et al. The role of aquaporin RWC3 in drought avoidance in rice [J]. Plant Cell Physiol, 2004, 45(4): 481–489. doi: 10.1093/pcp/pch058.
    [79] HACHEZ C, VESELOV D, YE Q, et al. Short-term control of maize cell and root water permeability through plasma membrane aquaporin isoforms [J]. Plant Cell Environ, 2012, 35(1): 185–198. doi: 10.1111/ j.1365-3040.2011.02429.x.
    [80] LIU P, YIN L N, WANG S W, et al. Enhanced root hydraulic conduc- tance by aquaporin regulation accounts for silicon alleviated salt- induced osmotic stress in Sorghum bicolor L. [J]. Environ Exp Bot, 2015, 111: 42–51. doi: 10.1016/j.envexpbot.2014.10.006.
    [81] SONG A L, LI P, FAN F L, et al. The effect of silicon on photo- synthesis and expression of its relevant genes in rice (Oryza sativa L.) under high-zinc stress [J]. PLoS One, 2014, 9(11): e113782. doi: 10. 1371/journal.pone.0113782.
    [82] SIMKIN A J, MCAUSLAND L, LAWSON T, et al. Overexpression of the rieskeFeS protein increases electron transport rates and biomass yield [J]. Plant Physiol, 2017, 175(1): 134–145. doi: 10.1104/pp.17.00622.
    [83] ZHANG Y, SHI Y, GONG H J, et al. Beneficial effects of silicon on photosynthesis of tomato seedlings under water stress [J]. J Integr Agric, 2018, 17(10): 2151–2159. doi: 10.1016/S2095-3119(18)62038-6.
    [84] JENNY A, MARK W, ROBIN G W, et al. Absence of the Lhcb1 and Lhcb2 proteins of the light-harvesting complex of photosystem II: Effects on photosynthesis, grana stacking and fitness [J]. Plant J, 2003, 35(3): 350–361. doi: 10.1046/j.1365-313X.2003.01811.x.
    [85] LONGONI P, DOUCHI D, CARITI F, et al. Phosphorylation of the light-harvesting complex II isoform Lhcb2 is central to state transitions [J]. Plant Physiol, 2015, 169(4): 2874–2883. doi: 10.1104/pp.15.01498.
    [86] ROGOWSKI P, WASILEWSKA-DĘBOWSKA W, KRUPNIK T, et al. Photosynthesis and organization of maize mesophyll and bundle sheath thylakoids of plants grown in various light intensities [J]. Environ Exp Bot, 2019, 162: 72–86. doi: 10.1016/j.envexpbot.2019.02.006.
    [87] SUN H J, SUN X W, WANG H, et al. Advances in salt tolerance molecular mechanism in tobacco plants [J]. Hereditas, 2020, 157(1): 5. doi: 10.1186/s41065-020-00118-0.
    [88] KHATTAB H I, EMAM M A, EMAM M M, et al. Effect of selenium and silicon on transcription factors NAC5 and DREB2A involved in drought-responsive gene expression in rice [J]. Biol Plant, 2014, 58(2): 265–273. doi: 10.1007/s10535-014-0391-z.
    [89] MAGHSOUDI K, EMAM Y, NIAZI A, et al. P5CS expression level and proline accumulation in the sensitive and tolerant wheat cultivars under control and drought stress conditions in the presence/absence of silicon and salicylic acid [J]. J Plant Interact, 2018, 13(1): 461–471. doi: 10.1080/17429145.2018.1506516.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

何静,朱婷,黄雪玲,马玲.硅提高植物抗旱性的生理机制研究进展[J].热带亚热带植物学报,2022,30(6):813~822

复制
分享
文章指标
  • 点击次数:253
  • 下载次数: 520
  • HTML阅读次数: 1161
  • 引用次数: 0
历史
  • 收稿日期:2021-11-02
  • 最后修改日期:2022-03-22
  • 在线发布日期: 2022-12-09
  • 出版日期: 2022-11-20
文章二维码