干旱胁迫下蒭雷草的生理响应
作者:
基金项目:

科技基础资源调查专项(2018FY100107);国家重点研发计划项目(2021YFC3100400);广东省科技计划项目(2019B121201005)资助


Physiological Response of Thuarea involuta under Drought Stress
Author:
  • CHEN Yilan

    CHEN Yilan

    South China Botanical Garden, Chinese Academy of Sciences, Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangzhou 510650, China;South China National Botanical Garden, Guangzhou 510650, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Dongming

    LIU Dongming

    South China Botanical Garden, Chinese Academy of Sciences, Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangzhou 510650, China;South China National Botanical Garden, Guangzhou 510650, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Jun

    WANG Jun

    South China Botanical Garden, Chinese Academy of Sciences, Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangzhou 510650, China;South China National Botanical Garden, Guangzhou 510650, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • JIAN Shuguang

    JIAN Shuguang

    South China Botanical Garden, Chinese Academy of Sciences, Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangzhou 510650, China;South China National Botanical Garden, Guangzhou 510650, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Faguo

    WANG Faguo

    South China Botanical Garden, Chinese Academy of Sciences, Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangzhou 510650, China;South China National Botanical Garden, Guangzhou 510650, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [38]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为探讨蒭雷草(Thuarea involuta)在热带珊瑚岛干旱环境下的适应能力,对干旱胁迫下蒭雷草叶片抗逆生理指标的变化进行了研究。结果表明,干旱胁迫初期,叶片的丙二醛(MDA)含量随胁迫程度增加的差异不显著;随胁迫时间的延长,除重度胁迫下先迅速增加后急速下降外,其余处理的变化较小。超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性随干旱胁迫程度增加而升高;随时间延长,SOD活性不断上升,POD活性基本稳定,CAT活性则先下降后上升。除轻度胁迫下可溶性蛋白(SP)含量低于对照外,其余处理均随干旱胁迫程度增加而增加;干旱胁迫下的脯氨酸(Pro)含量随时间延长呈先上升后下降的变化趋势,但在处理第18天时不同胁迫程度间均差异不显著。因此,蒭雷草具有较强的抗旱能力,可用于南海诸岛的人工植物群落构建和植被恢复以营造良好生态环境。

    Abstract:

    Tropical coral islands have adverse natural conditions, and a very fragile vegetation ecosystem. In order to investigate the suitability of Thuarea involuta in arid environment of tropical coral islands, the physiological indexes of stress resistance of leaves were studied. The results showed that there was no significant difference in malondialdehyde (MDA) content of leaves among drought degrees at early stress stage. The MDA content rapidly increased at first and then decreased quickly under severe drought stress, which had little change under other drought treatments. The activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) increased with the increment of drought degree. Along the treatment time, SOD activity increased, POD activity was basically stable, and CAT activity decreased first and then increased. The soluble protein (SP) content under light drought stress was lower than that under control, which increased with increment of drought stress. The change in proline (Pro) content increased first and then decreased with the treatment time, but there was no significant difference among stress treatments at 18th day. Therefore, Thuare involuta had strong drought resistance ability and could be used for artificial plant community construction, vegetation restoration and improving environmental conditions of Nansha Islands.

    参考文献
    [1] JIAN S G. Vegetation of tropical coral islands in China[J]. Guihaia, 2020, 40(3):443.[简曙光. 中国热带珊瑚岛植被[J]. 广西植物, 2020, 40(3):443.]
    [2] HUANG Z G, ZHANG W Q. A discussion on the quaternary climate record from the coral reef in tropical China[J]. Trop Geogr, 2008, 28(1):11-15.[黄镇国, 张伟强. 中国热带珊瑚礁的第四纪气候记录[J]. 热带地理, 2008, 28(1):11-15. doi:10.3969/j.issn.1001-5221.2008.01.003.]
    [3] XING F W, DENG S W. Flora of the South China Sea Island[M]. Beijing:China Forestry Press, 2019.[邢福武, 邓双文. 中国南海诸岛植物志[M]. 北京:中国林业出版社, 2019.]
    [4] LI X Y, LIU D M, JIAN S G, et al. Biological characteristics of drought resistance of Guettarda speciose[J]. Guihaia, 2021, 41(6):914-921.[李晓盈, 刘东明, 简曙光, 等. 海岸桐的抗旱生物学特性[J]. 广西植物, 2021, 41(6):914-921. doi:10.11931/hiuhaia.gxzw201908017.]
    [5] KUOH C S, HSIAO L C, LIAO G I. Comparison of upper floret development in bisexual and male spikelets of Thuarea involuta (Gramineae) with scanning electron microscopy[J]. Taiwania, 1998, 43(3):235-245.
    [6] WANG F, JIAN S, LIU D, et al. Constructing coral reef shelter by leveling coral reef sand, planting trees comprising arbor, shrubs, grass vine and herbaceous plant on coral reef sands, and performing conser-vation process:CN, 108605572-A; CN 108605572-B[P]. 2018.
    [7] ALLAWAY W G, PITMAN M G, STOREY R, et al. Water relations of coral cay vegetation on the great barrier reef:Water potentials and osmotic content[J]. Aust J Bot, 1984, 32(4):449-464. doi:10.1071/B T9840449.
    [8] LIANG F, TAN X H, DENG X, et al. Growth and physiological responses of semi-mangrove plant Barringtonia racemosa to water-logging and salinity stress[J]. Guihaia, 2021, 41(6):872-882.[梁芳, 檀小辉, 邓旭, 等. 半红树植物玉蕊对淹水-盐度胁迫的生长及生理响应[J]. 广西植物, 2021, 41(6):872-882. doi:10.11931/guihaia. gxzw202007036.]
    [9] LIU Z B, CHENG R M, XIAO W F, et al. Growth and physiological responses of Distylium chinense seedlings to autumn and winter flooding[J]. J Lake Sci, 2016, 28(2):405-413.[刘泽彬, 程瑞梅, 肖文发, 等. 中华蚊母树(Distylium chinense)幼苗对秋、冬季淹水的生长及生理响应[J]. 湖泊科学, 2016, 28(2):405-413. doi:10.18307/2016.0221.]
    [10] TANG D, CHENG P, YANG J J, et al. Physiological responses of plants to drought stress in the northern piedmont, Tianshan Mountains[J]. Arid Zone Res, 2021, 38(6):1683-1694.[汤东, 程平, 杨建军, 等. 天山北坡山前植物对干旱胁迫的生理响应[J]. 干旱区研究, 2021, 38(6):1683-1694. doi:10.13866/j.azr.2021.06.20.]
    [11] ZHANG Z L, LIU Z H, CHEN M H, et al. Physiology response of Correa carmen seedlings to combined elevated temperature and drought stress[J]. N Hort, 2017(19):81-88.[张志录, 刘中华, 陈明辉, 等. 高温干旱胁迫下考来木幼苗的生理响应[J]. 北方园艺, 2017(19):81-88. doi:10.11937/bfyy.20170134.]
    [12] WU L L, WANG D L, LI Z Y. Physiological response of Ligustrum robustum to continuous drought and rewatering[J]. Plant Physiol J, 2018, 54(5):837-844.[吴丽丽, 王德炉, 李自玉. 粗壮女贞对持续性干旱及复水的生理响应[J]. 植物生理学报, 2018, 54(5):837-844. doi:10.13592/j.cnki.ppj.2017.0570.]
    [13] REN Q Q, SUN J X, ZHANG D S, et al. Physiological response and drought resistance evaluation of different Hydrangea varieties under drought stress[J]. Acta Agric Univ Zhejiang, 2021, 33(10):1852-1860.[任倩倩, 孙纪霞, 张德顺, 等. 干旱胁迫下不同绣球品种生理响应与抗旱性评价[J]. 浙江农业学报, 2021, 33(10):1852-1860. doi:10. 3969/j.issn.1004-1524.2021.10.08.]
    [14] TONG Y, JIAN S G, CHEN Q, et al. Vascular plant diversity of the Paracel Islands, China[J]. Biodiv Sci, 2013, 21(3):364-374.[童毅, 简曙光, 陈权, 等. 中国西沙群岛植物多样性[J]. 生物多样性, 2013, 21(3):364-374. doi:10.3724/SP.J.1003.2013.11222.]
    [15] WANG S H, ZHU Y J, WANG Y F, et al. Effect of vegetation types on soil physicochemical property in East Island and Yongxing Island of Xisha Islands[J]. J Trop Subtrop Bot, 2019, 27(4):383-390.[王森浩, 朱怡静, 王玉芳, 等. 西沙群岛主要岛屿不同植被类型对土壤理化性质的影响[J]. 热带亚热带植物学报, 2019, 27(4):383-390. doi:10.11926/jtsb.4013.]
    [16] LIU X T, GE C D, ZOU X Q, et al. Carbon, Nitrogen geochemical characteristics and their implications on environmental change in the lagoon sediments of the Dongdao Island of Xisha Islands in South China Sea[J]. Acta Oceanol Sin, 2017, 39(6):43-54.[刘晓瞳, 葛晨东, 邹欣庆, 等. 西沙群岛东岛潟湖沉积物碳、氮元素地球化学特征及其指示的环境变化[J]. 海洋学报, 2017, 39(6):43-54. doi:10.3969/j. issn.0253-4193.2017.06.005.]
    [17] XING F W, WU D L, LI Z X, et al. Investigation of plant resources in Xisha Islands[J]. J Plant Resour Environ, 1993, 2(3):1-6.[邢福武, 吴德邻, 李泽贤, 等. 西沙群岛植物资源调查[J]. 植物资源与环境, 1993, 2(3):1-6.]
    [18] WANG X K, HUANG J L. Principles and Techniques of Plant Physio-logical and Biochemical Experiments[M]. 3rd ed. Beijing:Higher Education Press, 2015:131-133.[王学奎, 黄见良. 植物生理生化实验原理和技术[M]. 第3版. 北京:高等教育出版社, 2015:131-133.]
    [19] CHEN J X, WANG X F. Experimental Guidance of Plant Physiology[M]. Guangzhou:South China University of Technology Press, 2002.[陈建勋, 王晓峰. 植物生理学实验指导[M]. 广州:华南理工大学出版社, 2002.]
    [20] LU W J, LI Y S. Experimental Course of Plant Physiology[M]. Beijing:China Forestry Press, 2012.[路文静, 李奕松. 植物生理学实验教程[M]. 北京:中国林业出版社, 2012.]
    [21] LI H S. Principles and Techniques of Plant Physiological Biochemical Experiment[M]. Beijing:Higher Education Press, 2000.[李合生. 植物生理生化实验原理和技术[M]. 北京:高等教育出版社, 2000.]
    [22] WU S H, CHEN H W, JIAN S G, et al. The biological characteristics of Cordia subcordata on tropical coral island in China[J]. Ecol Sci, 2017, 36(6):57-63.[吴淑华, 陈昊雯, 简曙光, 等. 中国热带珊瑚岛橙花破布木(Cordia subcordata)的生物学特性[J]. 生态科学, 2017, 36(6):57-63. doi:10.14108/j.cnki.1008-8873.2017.06.008.]
    [23] CHEN J. Response of activated oxygen metabolism to drought stress of four ornamental species[D]. Hangzhou:Zhejiang Agric For University, 2013.[陈珺. 四种观赏植物的活性氧代谢对干旱胁迫的响应[D]. 杭州:浙江农林大学, 2013.]
    [24] TSIKAS D. Assessment of lipid peroxidation by measuring malondial-dehyde (MDA) and relatives in biological samples:Analytical and biological challenges[J]. Anal Biochem, 2017, 524:13-30. doi:10. 1016/j.ab.2016.10.021.
    [25] JI Y, ZHANG X Q, PENG Y, et al. Effects of drought stress on lipid peroxidation, osmotic adjustment and activities of protective enzymes in the roots and leaves of orchardgrass[J]. Acta Pratacult Sin, 2014, 23(3):144-151.[季杨, 张新全, 彭燕, 等. 干旱胁迫对鸭茅根、叶保护酶活性、渗透物质含量及膜质过氧化作用的影响[J]. 草业学报, 2014, 23(3):144-151. doi:10.1168/cyxb20140316.]
    [26] TONG S H, LIU N, WANG J, et al. Ecological and physiological adaptabilities of Catharanthus roseus to tropical coral island[J]. Guihaia, 2020, 40(3):384-394.[童升洪, 刘楠, 王俊, 等. 长春花(Catharanthus roseus)对热带珊瑚岛生理生态适应性研究[J]. 广西植物, 2020, 40(3):384-394. doi:10.11931/guihaia.gxzw201902010.]
    [27] ZHOU W M, LIU N, CAI H Y, et al. Ecophysiological adaptability of Hernandia nymphaeifolia to tropical coral islands[J]. Guihaia, 2021, 41(6):897-904.[周婉敏, 刘楠, 蔡洪月, 等. 莲叶桐对热带珊瑚岛环境的生理生态适应性[J]. 广西植物, 2021, 41(6):897-904. doi:10.11931/guihaia.gxzw202007030.]
    [28] LIU W Y, HE B, YANG F R, et al. Physiological response to drought and re-watering of different quinoa varieties[J]. Pratac Sci, 2019, 36(10):2656-2666.[文瑜, 何斌, 杨发荣, 等. 不同品种藜麦幼苗对干旱胁迫和复水的生理响应[J]. 草业科学, 2019, 36(10):2656-2666. doi:10.11829/j.issn1001-0629.2019-0698.]
    [29] Ingram J, Bartels D. The molecular basis of dehydration tolerance in plants[J]. Ann Rev Plant Biol, 1996, 47(1):377-403. doi:10.1146/annurev.arplant.47.1.377
    [30] LI H X. Physiological response mechanism and resistance evaluation of six peony cultivars to drought stress[J]. N Hort, 2021(4):64-71.[李海霞. 六个牡丹品种对干旱胁迫的生理响应机制及抗性评价[J]. 北方园艺, 2021(4):64-71. doi:10.11937/bfyy.20201252.]
    [31] LI J, CUI Y T, BAI Y W, et al. Physiological response and drought resistance evaluation of two kinds wolfberries on drought stress[J]. J Gansu Agric Univ, 2019, 54(5):79-87.[李捷, 崔永涛, 柏延文, 等. 两种枸杞对干旱胁迫的生理响应及抗旱性评价[J]. 甘肃农业大学学报, 2019, 54(5):79-87. doi:10.13432/j.cnki.jgsau.2019.05.010.]
    [32] ZHAO C C, LI X N, ZHANG Y K, et al. Physiological correspondence of four varieties of perennial ryegrass to drought stress[J]. Pratac Sci, 2020, 37(4):669-677.[赵春程, 李晓宁, 张寅坤, 等. 4个多年生黑麦草品种对干旱胁迫的生理响应[J]. 草业科学, 2020, 37(4):669-677. doi:10.11829/j. issn.1001-0629.2019-0528.]
    [33] WANG L H, MIAO J, ZUO J C, et al. Physiological response of Vitex trifolia var. simplicifolia from different provenances under drought stress and evaluation of drought tolerance[J] J SW For Univ, 2019, 39(1):69-79.[王连红, 苗杰, 左进城, 等. 不同种源单叶蔓荆对干旱胁迫的生理响应与耐旱性评价[J]. 西南林业大学学报, 2019, 39(1):69-79. doi:10.11929/j.swfu.201804044.]
    [34] Wang S, Zhou Q, Zhu Z L. Physiological and biochemical charac-teristics of Carpinus betulus seedlings under drought stress[J]. Acta Bot Boreali-Occid Sin, 2013, 33(12):2459-2466.[王飒,周琦,祝遵凌. 干旱胁迫对欧洲鹅耳枥幼苗生理生化特征的影响[J]. 西北植物学报, 2013, 33(12):2459-2466.]
    [35] ASHRAF M, AKRAM N A, AL-QURAINY F, et al. Drought tolerance:roles of organic osmolytes, growth regulators, and mineral nutrients[J]. Adv Agron, 2011, 111:249-296. doi:10.1016/B978-0-12-387689-8. 00002-3.
    [36] ZHANG L P, LIU Y, WANG Y, et al. The effects of NaCl stress on growth and accumulation of penetration adjustment substances in Glycyrrhiza[J]. J Inner Mongolia Agic Univ (Nat Sci), 2020, 41(3):10-15.[张林平, 刘艳, 王洋, 等. NaCl胁迫对甘草生长和渗透调节物质积累的影响[J]. 内蒙古农业大学学报(自然科学版), 2020, 41(3):10-15. doi:10.16853/j.cnki.1009-3575.2020.03.003.]
    [37] LIU X, GAO R M, DANG S N, et al. Physiological response of leaves of Dioscorea nipponica under drought stress[J]. N Hort, 2020(14):110-117.[刘翔, 高润梅, 党裳霓, 等. 干旱胁迫下穿龙薯蓣叶片的生理响应[J]. 北方园艺, 2020(14):110-117. doi:10.11937/bfyy. 20193640.]
    [38] KONG W P, ZHANG X A. Physiological response and drought resi-stance evaluation of four fig varieties to drought stress[J]. Acta Agric Boreali-Sin, 2019, 34(S1):105-113.[孔维鹏, 张小艾. 四个无花果品种对干旱胁迫的生理响应及抗旱性评价[J]. 华北农学报, 2019, 34(S1):105-113. doi:10.7668/hbnxb.20190269.]
    引证文献
引用本文

陈意兰,刘东明,王俊,简曙光,王发国.干旱胁迫下蒭雷草的生理响应[J].热带亚热带植物学报,2023,31(1):46~52

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-10-27
  • 最后修改日期:2022-01-04
  • 在线发布日期: 2023-02-24
  • 出版日期: 2023-01-20
文章二维码