4种木本植物对热带珊瑚岛极端环境的适应策略解析
作者:
基金项目:

国家重点研发计划项目(2021YFC3100401);中国科学院青年创新促进会优秀会员项目(Y202077);科技基础资源调查专项(2018FY100107)资助


Analysis of Adaptation Strategies of Four Woody Plants to the Extreme Environment of Tropical Coral Island Based on Functional Traits
Author:
  • LIU Fangyan

    LIU Fangyan

    Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;South China National Botanical Garden, Guangzhou 510650, China;University of Chinese Academy of Sciences, Beijing 100049, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Shike

    ZHANG Shike

    Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;South China National Botanical Garden, Guangzhou 510650, China;University of Chinese Academy of Sciences, Beijing 100049, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • HUANG Yao

    HUANG Yao

    Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;South China National Botanical Garden, Guangzhou 510650, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Jun

    WANG Jun

    Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;South China National Botanical Garden, Guangzhou 510650, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Nan

    LIU Nan

    Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;South China National Botanical Garden, Guangzhou 510650, China;Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [53]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为探索适生木本植物对热带珊瑚岛极端环境的适应策略,从海南文昌移栽夹竹桃(Nerium indicum)、黄金香柳(Melaleuca bracteata)、桑树(Morus alba)和银叶树(Heritiera littoralis)到热带珊瑚岛,对两地植物的叶片形态解剖学特性和抗性生理特征进行比较研究。结果表明,与文昌相比,热带珊瑚岛桑树的比叶面积显著增高;夹竹桃的栅栏海绵组织比无显著差异,而其他3种植物则显著降低;夹竹桃和桑树的叶绿素含量显著增高,黄金香柳和银叶树则显著降低;桑树的总抗氧化能力显著降低,其他3种植物则显著升高;夹竹桃的脯氨酸含量显著降低,其他3种植物则显著升高。因此,4种木本植物为适应热带珊瑚岛生境,夹竹桃和桑树呈现出“提高碳同化潜力-承受更高伤害”策略;而黄金香柳和银叶树呈现为“提高抵抗力-降低碳同化潜力”策略。

    Abstract:

    In order to explore the adaptation strategies of suitable woody plants to the extreme environment of tropical coral islands, Nerium indicum, Melaleuca bracteata, Morus alba, and Heritiera littoralis were transplanted to tropical coral island from the nursery of Wenchang City, Hainan Province, the morphological and anatomical characteristics of leaves and physiological characteristics of resistance of plants in two places were compared. The result showed that compared with Wenchang, the specific leaf area (SLA) of Morus alba in tropical coral island increased significantly. There was no significant difference in ratio of palisade tissue to sponge tissue (P/S) of N. indicum, while P/S of other three plants decreased significantly. The chlorophyll content of N. indicum and Morus alba increased significantly, while that of Melaleuca bracteata and H. littoralis decreased significantly. The total antioxidant capacity (T-AOC) of N. indicum, Melaleuca bracteata and H. littoralis increased significantly, while that of M. alba decreased significantly. The free proline (Pro) content in N. indicum leaves decreased significantly, while that of Melaleuca bracteata, Morus alba and H. littoralis increased significantly. Therefore, in order to adapt to the tropical coral island habitat, Morus alba and N. indicum showed a strategy of "enhancing carbon assimilation potential and sustaining higher damage", while Melaleuca bracteata and H. littoralis showed a strategy of "improving resistance and reducing carbon assimilation potential".

    参考文献
    [1] REN H, JIAN S G, ZHANG Q M, et al. Plants and vegetation on South China Sea Islands[J]. Ecol Environ Sci, 2017, 26(10):1639-1648.[任海, 简曙光, 张倩媚, 等. 中国南海诸岛的植物和植被现状[J]. 生态环境学报, 2017, 26(10):1639-1648. doi:10.16258/j.cnki.1674-5906. 2017.10.001.]
    [2] JIAN S G, REN H. Atlas on Tool Species for Vegetation Restoration on Tropical Coral Islands[M]. Beijing:China Forestry Publishing House, 2017:2-119.[简曙光, 任海. 热带珊瑚岛礁植被恢复工具种图谱[M]. 北京:中国林业出版社, 2017:2-119.]
    [3] LI P, HUANG Z L. A study on vegetation restoration for the degenerated sloping grassland in Nan'ao Island[J]. Trop Geogr, 2007, 27(1):21-24.[李萍, 黄忠良. 南澳岛退化草坡的植被恢复研究[J]. 热带地理, 2007, 27(1):21-24. doi:10.3969/j.issn.1001-5221.2007.01.005.]
    [4] WEIHER E, WERF A, THOMPSON K, et al. Challenging Theo-phrastus:A common core list of plant traits for functional ecology[J]. J Veg Sci, 1999, 10(5):609-620. doi:10.2307/3237076.
    [5] BRADSHAW A D. Evolutionary significance of phenotypic plasticity in plants[J]. Adv Genet, 1965, 13:115-155. doi:10.1016/S0065-2660(08)60048-6.
    [6] BRADSHAW A D. Unravelling phenotypic plasticity:Why should we bother?[J]. New Phytol, 2006, 170(4):644-648. doi:10.1111/j.1469-8137.2006.01761.x.
    [7] HU Q P, GUO Z H, LI C Y, et al. Advance at phenotypic plasticity in plant responses to abiotic factors[J]. Sci Silv Sin, 2008, 44(5):135-142.[胡启鹏, 郭志华, 李春燕, 等. 植物表型可塑性对非生物环境因子的响应研究进展[J]. 林业科学, 2008, 44(5):135-142. doi:10.3321/j. issn:1001-7488.2008.05.025.]
    [8] GUI Z, GAO J M. Influence of 6 alfalfa varieties on free proline content and SOD activity in salt stress[J]. J Tianjin Agric Univ, 2007, 14(4):18-21.[桂枝, 高建明. 盐胁迫对6个苜蓿品种脯氨酸含量和超氧化物歧化酶活性的影响[J]. 天津农学院学报, 2007, 14(4):18-21. doi:10.3969/j.issn.1008-5394.2007.04.005.]
    [9] DONG J F, LI C H, LIU G H, et al. Analysis of drought resistance by leaf anatomical structure of six species of sandy willows[J]. J Desert Res, 2009, 29(3):480-484.[董建芳, 李春红, 刘果厚, 等. 内蒙古6种沙生柳树叶片解剖结构的抗旱性分析[J]. 中国沙漠, 2009, 29(3):480-484.]
    [10] LUO Q, LIU H, WU G L, et al. Using functional traits to evaluate the adaptability of five plant species on tropical coral islands[J]. Acta Ecol Sin, 2018, 38(4):1256-1263.[罗琦, 刘慧, 吴桂林, 等. 基于功能性状评价5种植物对热带珊瑚岛环境的适应性[J]. 生态学报, 2018, 38(4):1256-1263. doi:10.5846/stxb201612152597.]
    [11] TONG S H, LIU N, WANG J, et al. Ecological and physiological adaptabilities of Catharanthus roseus to tropical coral island[J]. Guihaia, 2020, 40(3):384-394.[童升洪, 刘楠, 王俊, 等. 长春花(Catharanthus roseus)对热带珊瑚岛生理生态适应性研究[J]. 广西植物, 2020, 40(3):384-394. doi:10.11931/guihaia.gxzw201902010.]
    [12] ZHANG Y F, YIN B. Influences of salt and alkali mixed stresses on antioxidative activity and MDA content of Medicago sativa at seedling stage[J]. Acta Prat Sin, 2009, 18(1):46-50.[张永峰, 殷波. 混合盐碱胁迫对苗期紫花苜蓿抗氧化酶活性及丙二醛含量的影响[J]. 草业学报, 2009, 18(1):46-50. doi:10.3321/j.issn:1004-5759.2009.01. 007.]
    [13] Dobra J, Motyka V, Dobrev P, et al. Comparison of hormonal responses to heat, drought and combined stress in tobacco plants with elevated proline content[J]. J Plant Physiol, 2010, 167(16):1360-1370. doi:10.1016/j.jplph.2010.05.013.
    [14] ZHAO F B, WANG L Q, JI G H, et al. Effects of NaCl stress on plant biology indicators and MDA content of 3 submerged plants[J]. Environ Pollut Control, 2012, 34(10):40-44.[赵风斌, 王丽卿, 季高华, 等. 盐胁迫对3种沉水植物生物学指标及叶片中丙二醛含量的影响[J]. 环境污染与防治, 2012, 34(10):40-44. doi:10.15985/j.cnki. 1001-3865.2012.10.001.]
    [15] ZHANG L, LIU Z W, JIANG D Q. Ecological investigation of the vegetation in the paracel islands[J]. Chin Agric Sci Bull, 2011, 27(14):181-186.[张浪, 刘振文, 姜殿强. 西沙群岛植被生态调查[J]. 中国农学通报, 2011, 27(14):181-186.]
    [16] XIONG H S. Reef area navigation environment safety evaluation research[D]. Dalian:Dalian Maritime University, 2014.[熊海生. 岛礁区通航环境安全评估研究[D]. 大连:大连海事大学, 2014.]
    [17] CASTILLA-BELTRÁN A, DUARTE I, DE NASCIMENTO L, et al. Using multiple palaeoecological indicators to guide biodiversity conser-vation in tropical dry islands:The case of São Nicolau, Cabo Verde[J]. Biol Conserv, 2020, 242:108397. doi:10.1016/j.biocon.2019.108397.
    [18] TSANG Y P, TINGLEY R W, HSIAO J, et al. Identifying high value areas for conservation:Accounting for connections among terrestrial, freshwater, and marine habitats in a tropical island system[J]. J Nat Conserv, 2019, 50:125711. doi:10.1016/j.jnc.2019.125711.
    [19] WANG B S, PENG S L, GUO L, et al. Diversity of tropical forest landscape types in Hainan Island, China[J]. Acta Ecol Sin, 2007, 27(5):1690-1695. doi:10.3321/j.issn:1000-0933.2007.05.003.
    [20] LI J, LIU N, REN H, et al. Ecological adaptability of seven plant species to tropical coral island habitat[J]. Ecol Environ, 2016, 25(5):790-794.[李婕, 刘楠, 任海, 等. 7种植物对热带珊瑚岛环境的生态适应性[J]. 生态环境学报, 2016, 25(5):790-794. doi:10.16258/j. cnki.1674-5906.2016.05.009.]
    [21] LIN Y X, LIU H, HE P C, et al. Physiological and biochemical responses of three species to environment stresses of tropical coral islands[J]. J Trop Subtrop Bot, 2017, 25(6):562-568.[林忆雪, 刘慧, 贺鹏程, 等. 三种适生植物对热带珊瑚岛胁迫生境的生理生化响应[J]. 热带亚热带植物学报, 2017, 25(6):562-568. doi:10.11926/jtsb. 3755.]
    [22] WANG X H, LIU N, REN H, et al. Ecological and biological characteristics of Pisonia grandis[J]. Guihaia, 2017, 37(12):1489-1497.[王馨慧, 刘楠, 任海, 等. 抗风桐(Pisonia grandis)的生态生物学特征[J]. 广西植物, 2017, 37(12):1489-1497. doi:10.11931/guihaia.gxzw201709003.]
    [23] TONG Y, JIAN S G, CHEN Q, et al. Vascular plant diversity of the Paracel Islands, China[J]. Biodiv Sci, 2013, 21(3):364-374.[童毅, 简曙光, 陈权, 等. 中国西沙群岛植物多样性[J]. 生物多样性, 2013, 21(3):364-374. doi:10.3724/SP.J.1003.2013.11222.]
    [24] CORNELISSEN J H C, LAVOREL S, GARNIER E, et al. A handbook of protocols for standardized and easy measurement of plant functional traits worldwide[J]. Aust J Bot, 2003, 51(4):335-380. doi:10.1071/bt02124.
    [25] ZHANG S M, LIU H Y, CHENG J J, et al. Free-hand section techniques for clear observation of cell structures of millet (Setaria italica) and rice (Oyrza sativa) leaves[J]. Genom Appl Biol, 2015, 34(7):1527-1530.[张书敏, 刘红云, 程金金, 等. 快速徒手切片法观察谷子和水稻叶片显微结构[J]. 基因组学与应用生物学, 2015, 34(7):1527-1530. doi:10.13417/j.gab.034.001527.]
    [26] REN H, PENG S L, SUN G C, et al. The ecological comparison of Psychotria rubra and Rhodomyrtus tomentosa in south China[J]. Chin J Plant Ecol, 1997, 21(4):386-392.[任海, 彭少麟, 孙谷畴, 等. 广东中部两种常见灌木的生态学比较[J]. 植物生态学报, 1997, 21(4):386-392.]
    [27] LI H S, SUN Q, ZHAO S J, et al. Principles and Techniques of Plant Physiological Biochemical Experiment[M]. Beijing:Higher Education Press, 2000:1-278.[李合生, 孙群, 赵世杰, 等. 植物生理生化实验原理和技术[M]. 北京:高等教育出版社, 2000:1-278.]
    [28] FANG M, WANG Y F, GONG Z Y. Study on antioxidant activities of fifty kinds of fruits and thirty-three kinds of vegetables[J]. Food Sci, 2008, 29(10):97-100.[方敏, 王耀峰, 宫智勇. 15种水果和33种蔬菜的抗氧化活性研究[J]. 食品科学, 2008, 29(10):97-100. doi:10. 3321/j.issn:1002-6630.2008.10.015.]
    [29] ZHANG D Z, WANG P H, ZHAO H X. Determination of the content of free proline in wheat leaves[J]. Plant Physiol Commun, 1990, 4:62-65.[张殿忠, 汪沛洪, 赵会贤. 测定小麦叶片游离脯氨酸含量的方法[J]. 植物生理学通讯, 1990, 4:62-65. doi:10.13592/j.cnki. ppj.1990.04.030.]
    [30] LIN Z F, LI S S, LIN G Z, et al. Superoxide dismutase activity and lipid peroxidation in relation to senescence of rice leaves[J]. Acta Bot Sin, 1984, 26(6):605-615.[林植芳, 李双顺, 林桂珠, 等. 水稻叶片的衰老与超氧物歧化酶活性及脂质过氧化作用的关系[J]. 植物学报, 1984, 26(6):605-615.]
    [31] YE L H, HUANG X L, XUE L. Effects of drought on leaf traits and drought-resistant physiology of trees[J]. World For Res, 2014, 27(1):29-34.[叶龙华, 黄香兰, 薛立. 干旱对树木叶片性状及抗旱生理的影响[J]. 世界林业研究, 2014, 27(1):29-34. doi:10.13348/j.cnki. sjlyyj.2014.01.006.]
    [32] SU H, LI Y G, LAN Z J, et al. Leaf-level plasticity of Salix gordejevii in fixed dunes compared with lowlands in Hunshandake Sandland, north China[J]. J Plant Res, 2009, 122(6):611-622. doi:10.1007/s10265-009-0249-1.
    [33] REICH P B, WALTERS M B, ELLSWORTH D S, et al. Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span:A test across biomes and functional groups[J]. Oecologia, 1998, 114(4):471-482. doi:10.1007/s004420050471.
    [34] YANG S H, JI J, WANG G. Effects of salt stress on plants and the mechanism of salt tolerance[J]. World Sci-Technol Res Devlop, 2006, 28(4):70-76.[杨少辉, 季静, 王罡. 盐胁迫对植物的影响及植物的抗盐机理[J]. 世界科技研究与发展, 2006, 28(4):70-76. doi:10. 16507/j.issn.1006-6055.2006.04.012.]
    [35] TENG Z H, ZHI L, ZONG X F, et al. Effects of high temperature on chlorophyll fluorescence, active oxygen resistance activity, and grain quality in grain-filling periods in rice plants[J]. Acta Agron Sin, 2008, 34(9):1662-1666.[滕中华, 智丽, 宗学凤, 等. 高温胁迫对水稻灌浆结实期叶绿素荧光、抗活性氧活力和稻米品质的影响[J]. 作物学报, 2008, 34(9):1662-1666. doi:10.3724/SP.J.1006.2008.01662.]
    [36] JIAO D M, LI X, HUANG X Q, et al. The relationship among photo-inhibition, photooxidation and early aging at later developmental stages in different high yield varieties[J]. Sci Agric Sin, 2002, 35(5):487-492.[焦德茂, 李霞, 黄雪清, 等. 不同高产水稻品种生育后期叶片光抑制、光氧化和早衰的关系[J]. 中国农业科学, 2002, 35(5):487-492. doi:10.3321/j.issn:0578-1752.2002.05.005.]
    [37] ZHAO Y J, WENG B Q, WANG Y X, et al. Plant physio-ecological responses to drought stress and its research progress[J]. Fujian Sci Technol Rice Wheat, 2009, 27(2):45-50.[赵雅静, 翁伯琦, 王义祥, 等. 植物对干旱胁迫的生理生态响应及其研究进展[J]. 福建稻麦科技, 2009, 27(2):45-50. doi:10.3969/j.issn.1008-9799.2009.02.022.]
    [38] Havaux M, Tardy F. Thermostability and photostability of photo-system Ⅱ in leaves of the chlorina-f2 barley mutant deficient in light-harvesting chlorophyll a/b protein complexes[J]. Plant Physiol, 1997, 113(3):913-923. doi:10.1104/PP.113.3.913.
    [39] CHEN P Q, YU S L, ZHAN Y N, et al. A review on plant heat stress physiology[J]. Chin Agric Sci Bull, 2006, 22(5):223-227.[陈培琴, 郁松林, 詹妍妮, 等. 植物在高温胁迫下的生理研究进展[J]. 中国农学通报, 2006, 22(5):223-227. doi:10.3969/j.issn.1000-6850.2006. 05.060.]
    [40] ZHANG H M, WANG M Y, HOU J H. Effects of drought stress upon the contents of hydrogen peroxide and MDA and the activities of SOD and CAT in maize[J]. J Inner Mongolia Inst Anim Husb, 1993, 14(4):92-95.[张海明, 王茅雁, 候建华. 干旱对玉米过氧化氢、MDA含量及SOD、CAT活性的影响[J]. 内蒙古农牧学院学报, 1993, 14(4):92-95.]
    [41] YAMASAKI H, HESHIKI R, IKEHARA N. Leaf-goldenning induced by high light in Ficus microcarpa L. f., a tropical fig[J]. J Plant Res, 1995, 108(2):171-180. doi:10.1007/BF02344341.
    [42] DU X M, YIN W X, ZHAO Y X, et al. The production and scavenging of reactive oxygen species in plants[J]. Chin J Biotechnol, 2001, 17(2):121-125.[杜秀敏, 殷文璇, 赵彦修, 等. 植物中活性氧的产生及清除机制[J]. 生物工程学报, 2001, 17(2):121-125. doi:10.3321/j.issn:1000-3061.2001.02.003.]
    [43] WANG X F, GAO W Q, LIU J F, et al. Plant defensive strategies and environment-driven mechanisms[J]. Chin J Ecol, 2015, 34(12):3542-3552.[王小菲, 高文强, 刘建锋, 等. 植物防御策略及其环境驱动机制[J]. 生态学杂志, 2015, 34(12):3542-3552. doi:10.13292/j. 1000-4890.2015.0333.]
    [44] LU J J, DUO L A, LIU X J. Changes in SOD and POD activity and free proline content of Lolium perenne and Festuca elata leaves under different levels of salt stress[J]. Bull Bot Res, 2004, 24(1):115-119.[卢静君, 多立安, 刘祥君. 盐胁迫下两草种SOD和POD及脯氨酸动态研究[J]. 植物研究, 2004, 24(1):115-119. doi:10.3969/j.issn. 1673-5102.2004.01.027.]
    [45] LUO J X, MA L, CHAI C J, et al. Effect of drought stress on growth and MDA and proline of Cotoneaster hjelmqvistii[J]. Tianjin Agric Sci, 2009, 15(1):1-4.[骆建霞, 马莉, 柴慈江, 等. 干旱胁迫对海姆维斯蒂栒子生长及丙二醛和脯氨酸含量的影响[J]. 天津农业科学, 2009, 15(1):1-4.]
    [46] Hong Z L, Lakkineni K, Zhang Z M, et al. Removal of feedback inhibition of Δ1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress[J]. Plant Physiol, 2000, 122(4):1129-1136. doi:10.1104/pp.122. 4.1129.
    [47] ZHANG L, LUO T X. Advances in ecological studies on leaf lifespan and associated leaf traits[J]. Chin J Plant Ecol, 2004, 28(6):844-852.[张林, 罗天祥. 植物叶寿命及其相关叶性状的生态学研究进展[J]. 植物生态学报, 2004, 28(6):844-852. doi:10.17521/cjpe.2004.0110.]
    [48] Shearman R C, Beard J B. Turfgrass wear tolerance mechanisms:Ⅲ. Physiological, morphological, and anatomical characteristics asso-ciated with turfgrass wear tolerance[J]. Agron J, l975, 67(2):215-218. doi:10.2134/agronj1975.00021962006700020011x.
    [49] Rosenthal G A, Berenbaum M R. Herbivores, Their Inter-actions with Secondary Plant Metabolites[M]. 2nd ed. San Diego:Academic Press, 1992:1-468.
    [50] OSUNKOYA O O, BAYLISS D, PANETTA F D, et al. Leaf trait co-ordination in relation to construction cost, carbon gain and resource-use efficiency in exotic invasive and native woody vine species[J]. Ann Bot, 2010, 106(2):371-380. doi:10.1093/aob/mcq119.
    [51] LEISHMAN M R, HASLEHURST T, ARES A, et al. Leaf trait rela-tionships of native and invasive plants:Community-and global-scale comparisons[J]. New Phytol, 2007, 176(3):635-643. doi:10.1111/j. 1469-8137.2007.02189.x.
    [52] MA Y J. Study on the characteristics of soil bacterial communities under different vegetation restoration methods in desertificated land of Poyang Lake[D]. Nanchang:Jiangxi Normal University, 2020.[马永杰. 鄱阳湖沙化土地不同植被恢复方式下的土壤细菌群落特征研究[D]. 南昌:江西师范大学, 2020.]
    [53] ZHANG C, XIONG J W, SHU Y, et al. Research progress of Morus alba L. and its ecological functions[J]. CS For Inventory Plan, 2016, 35(3):53-56.[张超, 熊嘉武, 舒勇, 等. 桑树及其生态功能的研究进展[J]. 中南林业调查规划, 2016, 35(3):53-56. doi:10.16166/j. cnki.cn43-1095.2016.03.012.]
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘芳延,张世柯,黄耀,王俊,刘楠.4种木本植物对热带珊瑚岛极端环境的适应策略解析[J].热带亚热带植物学报,2023,31(2):192~200

复制
分享
文章指标
  • 点击次数:174
  • 下载次数: 538
  • HTML阅读次数: 544
  • 引用次数: 0
历史
  • 收稿日期:2021-10-25
  • 最后修改日期:2022-02-25
  • 在线发布日期: 2023-03-31
  • 出版日期: 2023-03-20
文章二维码