闽西南红壤侵蚀区黑莎草功能性状特征及其与土壤因子的关系
作者:
基金项目:

福建省高校产学合作项目(2020N5007)资助


Functional Traits of Gahnia tristis and Its Relationship with Soil Factors in the Red Soil Erosion Area of Southwestern Fujian
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [52]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了解黑莎草(Gahnia tristis)在南方红壤侵蚀区的适应状况,测定了长汀县红壤侵蚀区的黑莎草叶片、根系的功能性状及土壤理化性质,并应用数理统计方法分析了黑莎草叶片与根系功能性状之间的相关性,及其对土壤因子的响应。结果表明,黑莎草叶片表型性状在冬夏季间存在显著差异,叶长、叶宽、叶组织密度和叶绿素表现为夏季显著大于冬季,根系表型性状则更具稳定性,冬季的根系养分含量均高于夏季,养分的分配上叶片养分高于根系养分。叶组织密度与叶绿素含量呈显著正相关,与比叶面积呈显著负相关;根组织密度与比根长和比根面积均呈显著负相关,叶片和根系养分间均呈显著正相关,土壤碳、氮、磷含量是影响黑莎草功能性状主要因子。因此,黑莎草可通过调节功能性状以适应环境变化,可作为地带性植物应用于南方红壤侵蚀区的植被恢复和水土流失治理。

    Abstract:

    In order to understand the adaptation of Gahnia tristis in the red soil erosion zone of southern China, the functional traits of leaves and roots of G. tristis, and the physicochemical properties of soil were determined and their correlations and the responses of leaves and roots of G. tristis to soil factors were analyzed by using mathematical statistics method. The results showed that there were significant differences in phenotypic traits of Gahnia tristis leaves between winter and summer, leaf length, leaf width, leaf tissue density and chlorophyll content were significantly higher in summer than those in winter, while the root phenotypic traits were more stable. The nutrient content of roots in winter was higher than that in summer, and the nutrient allocation in leaves was higher than that of roots. Leaf tissue density had positive correlation with chlorophyll content and negative with specific leaf area. There was significant negative correlation between root tissue density and specific root length and specific root area, and significant positive correlation between leaf and root nutrients. Soil carbon, nitrogen, and phosphorus contents were the main factors affecting the functional properties of G. tristis. Therefore, it was suggested that G. tristis could adapt to environmental changes by adjusting its functional traits, which could be used as a zonal plant for vegetation restoration and soil erosion control in the red soil erosion areas of south China.

    参考文献
    [1] LIU X J, MA K P. Plant functional traits: Concepts, applications and future directions [J]. Sci Sin Vitae, 2015, 45(4): 325–339. doi: 10.1360/ N052014-00244. 刘晓娟, 马克平. 植物功能性状研究进展 [J]. 中国科学: 生命科学, 2015, 45(4): 325–339. doi: 10.1360/N052014-00244.
    [2] MENG T T, NI J, WANG G H. Plant functional traits, environments and ecosystem functioning [J]. J Plant Ecol, 2007, 31(1): 150–165. 孟婷婷, 倪健, 王国宏. 植物功能性状与环境和生态系统功能 [J]. 植物生态学报, 2007, 31(1): 150–165.
    [3] REICH P B, WRIGHT I J, CAVENDER-BARES J, et al. The evolution of plant functional variation: Traits, spectra, and strategies [J]. Int J Plant Sci, 2003, 164(S3): S143–S164. doi: 10.1086/374368.
    [4] VAN KLEUNEN M, FISCHER M. Constraints on the evolution of adaptive phenotypic plasticity in plants [J]. New Phytol, 2005, 166(1): 49–60. doi: 10.1111/j.1469-8137.2004.01296.x.
    [5] BLONDER B, BALDWIN B G, ENQUIST B J, et al. Variation and macroevolution in leaf functional traits in the Hawaiian silversword alliance (Asteraceae) [J]. J Ecol, 2016, 104(1): 219–228. doi: 10.1111/ 1365-2745.12497.
    [6] WESTOBY M, WRIGHT I J. Land-plant ecology on the basis of functional traits [J]. Trends Ecol Evol, 2006, 21(5): 261–268. doi: 10. 1016/j.tree.2006.02.004.
    [7] SHI Y, WEN Z M, GONG S H. Comparisons of relationships between leaf and fine root traits in hilly area of the Loess Plateau, Yanhe River basin, Shaanxi Province, China [J]. Acta Ecol Sin, 2011, 31(22): 6805– 6814. 施宇, 温仲明, 龚时慧. 黄土丘陵区植物叶片与细根功能性状关系及其变化 [J]. 生态学报, 2011, 31(22): 6805–6814.
    [8] MAO W, LI Y L, ZHANG T H, et al. Research advances of plant leaf traits at different ecology scales [J]. J Desert Res, 2012, 32(1): 33–41. 毛伟, 李玉霖, 张铜会, 等. 不同尺度生态学中植物叶性状研究概述 [J]. 中国沙漠, 2012, 32(1): 33–41.
    [9] DING J, WU Q, YAN H, et al. Effects of topographic variations and soil characteristics on plant functional traits in a subtropical evergreen broad-leaved forest [J]. Biodiv Sci, 2011, 19(2): 158–167. doi: 10. 3724/SP.J.1003.2011.10312. 丁佳, 吴茜, 闫慧, 等. 地形和土壤特性对亚热带常绿阔叶林内植物功能性状的影响 [J]. 生物多样性, 2011, 19(2): 158–167. doi: 10. 3724/SP.J.1003.2011.10312.
    [10] JAGER M M, RICHARDSON S J, BELLINGHAM P J, et al. Soil fertility induces coordinated responses of multiple independent functional traits [J]. J Ecol, 2015, 103(2): 374–385. doi: 10.1111/1365-2745. 12366.
    [11] LIU M X, MA J Z. Responses of plant functional traits and soil factors to slope aspect in alpine meadow of south Gansu, northwest China [J]. Chin J Appl Ecol, 2012, 23(12): 3295–3300. doi: 10.13287/j.1001- 9332.2012.0410. 刘旻霞, 马建祖. 甘南高寒草甸植物功能性状和土壤因子对坡向的响应 [J]. 应用生态学报, 2012, 23(12): 3295–3300. doi: 10.13287/j. 1001-9332.2012.0410.
    [12] THOMAS J M, ROSE T P. Environmental isotopes in hydrogeology [J]. Environ Geol, 2002, 43(5): 532. doi: 10.1007/s00254-002-0677-x.
    [13] ZHOU Y S, WANG L Q, ZHANG P, et al. Responses of the root architecture of Stipa grandis to grassland degradation [J]. Pratac Sci, 2011, 28(11): 1962–1966. 周艳松, 王立群, 张鹏, 等. 大针茅根系构型对草地退化的响应 [J]. 草业科学, 2011, 28(11): 1962–1966.
    [14] CATFORD J A, JANSSON R. Drowned, buried and carried away: Effects of plant traits on the distribution of native and alien species in riparian ecosystems [J]. New Phytol, 2014, 204(1): 19–36. doi: 10. 1111/nph.12951.
    [15] ZHANG F, CHEN J W, WANG M B. The spatial distribution and seasonal dynamics of fine roots in a young Caragana korshinskii plantation [J]. Acta Ecol Sin, 2012, 32(17): 5484–5493. doi: 10.5846/ stxb201111041669. 张帆, 陈建文, 王孟本. 幼龄柠条细根的空间分布和季节动态 [J]. 生态学报, 2012, 32(17): 5484–5493. doi: 10.5846/stxb201111041669.
    [16] FENG Q H, SHI Z M, DONG L L. Response of plant functional traits to environment and its application [J]. Sci Silv Sin, 2008, 44(4): 125– 131. doi: 10.3321/j.issn:1001-7488.2008.04.023. 冯秋红, 史作民, 董莉莉. 植物功能性状对环境的响应及其应用 [J]. 林业科学, 2008, 44(4): 125–131. doi: 10.3321/j.issn:1001-7488. 2008.04.023.
    [17] HE P C, YE Q. Plant functional traits: from individual plant to global scale [J]. J Trop Subtrop Bot, 2019, 27(5): 523–533. doi: 10.11926/jtsb. 4108. 贺鹏程, 叶清. 基于植物功能性状的生态学研究进展: 从个体水平到全球尺度 [J]. 热带亚热带植物学报, 2019, 27(5): 523–533. doi: 10.11926/jtsb.4108.
    [18] HU Y Q, KE X D, XU M F, et al. Herbaceous plant in response to understory light regimes in a subtropical forest community [J]. J CS Univ For Technol, 2016, 36(8): 72–76. doi: 10.14067/j.cnki.1673-923x. 2016.08.014. 胡砚秋, 柯娴氡, 徐明锋, 等. 亚热带森林群落草本植物对林下光环境的响应 [J]. 中南林业科技大学学报, 2016, 36(8): 72–76. doi: 10.14067/j.cnki.1673-923x.2016.08.014.
    [19] WANG J. Effect of drought stress on the relationship of biodiversity and ecosystem function [D]. Guangzhou: Sun Yat-Sen University, 2006. 王江. 干旱胁迫对生物多样性与生态系统功能关系的影响 [D]. 广州: 中山大学, 2006.
    [20] TU H T. The model of biomass and carbon of shrub and herb under three forest types [D]. Beijing: Beijing Forestry University, 2016. 涂宏涛. 三种森林类型下灌草生物量及碳储量模型 [D]. 北京: 北京林业大学, 2016.
    [21] CHEN Z B, CHEN Z Q, YUE H. Comprehensive Research on Soil and Water Conservation in Granite Red Soil Region [M]. Beijing: Science Press, 2013: 197. 陈志彪, 陈志强, 岳辉. 花岗岩红壤侵蚀区水土保持综合研究: 以福建省长汀朱溪小流域为例 [M]. 北京: 科学出版社, 2013.
    [22] LI D W, WANG Z Q, TIAN H X, et al. Carbon, nitrogen and pho- sphorus contents in soils on Taibai Mountain and their ecological stoichiometry relative to elevation [J]. Acta Pedol Sin, 2017, 54(1): 160–170. doi: 10.11766/trxb201604140096. 李丹维, 王紫泉, 田海霞, 等. 太白山不同海拔土壤碳、氮、磷含量及生态化学计量特征 [J]. 土壤学报, 2017, 54(1): 160–170. doi: 10. 11766/trxb201604140096.
    [23] YAN Q Y, DUAN Z Q, LI X, et al. Effect of root zone temperature on growth of cucumber and nutrient utilization in soils [J]. Acta Pedol Sin, 2013, 50(4): 752–760. doi: 10.11766/trxb201206280258. 闫秋艳, 段增强, 李汛, 等. 根区温度对黄瓜生长和土壤养分利用的影响 [J]. 土壤学报, 2013, 50(4): 752–760. doi: 10.11766/trxb2012 06280258.
    [24] GUO R, WEN Z M, WANG H X, et al. Relationships among leaf traits and their expression in different vegetation zones in Yanhe River Basin, northwest China [J]. Chin J Appl Ecol, 2015, 26(12): 3627–3633. doi: 10.13287/j.1001-9332.20151016.016. 郭茹, 温仲明, 王红霞, 等. 延河流域植物叶性状间关系及其在不同植被带的表达 [J]. 应用生态学报, 2015, 26(12): 3627–3633. doi: 10.13287/j.1001-9332.20151016.016.
    [25] ZHANG X, WANG Z N, LU J Y, et al. Responses of leaf traits to drought at different growth stages of alfalfa [J]. Acta Ecol Sin, 2016, 36(9): 2669–2676. doi: 10.5846/stxb201406261324. 张曦, 王振南, 陆姣云, 等. 紫花苜蓿叶性状对干旱的阶段性响应 [J]. 生态学报, 2016, 36(9): 2669–2676. doi: 10.5846/stxb201406261324.
    [26] NIKLAS K J, COBB E D, NIINEMETS U, et al. ‘‘Diminishing returns’’ in the scaling of functional leaf traits across and within species groups [J]. Proc Natl Acad Sci USA, 2007, 104(21): 8891–8896. doi: 10.1073/pnas.0701135104.
    [27] LUO Z, LIU H, ZHAO W P, et al. Effects of reduced nitrogen rate on cotton yield and nitrogen use efficiency as mediated by application mode or plant density [J]. Field Crops Res, 2018, 218: 150–157. doi: 10.1016/j.fcr.2018.01.003.
    [28] LI D D, TIAN M Y, CAI J, et al. Effects of low nitrogen supply on relationships between photosynthesis and nitrogen status at different leaf position in wheat seedlings [J]. Plant Growth Regul, 2013, 70(3): 257–263. doi: 10.1007/s10725-013-9797-4.
    [29] QI D H, WENG Z M, YANG S S, et al. Trait-based responses and adaptation of Artemisia sacrorum to environmental changes [J]. Chin J Appl Ecol, 2015, 26(7): 1921–1927. doi: 10.13287/j.1001-9332.2015 0506.016. 戚德辉, 温仲明, 杨士梭, 等. 基于功能性状的铁杆蒿对环境变化的响应与适应 [J]. 应用生态学报, 2015, 26(7): 1921–1927. doi: 10. 13287/j.1001-9332.20150506.016.
    [30] ZHENG Y. The Spatial and temporal variation of plant leaf and fine root traits in the Yanhe River Catchment, Shaanxi, China [D]. Yangling: Northwest Agricultural & Forestry University, 2014. 郑颖. 延河流域植物叶片与细根功能性状的时空变化 [D]. 杨凌: 西北农林科技大学, 2014.
    [31] XU K, LI F L, GOU S Y, et al. Root functional traits and trade-offs in one-year-old plants of 25 species from the arid valley of Minjiang River [J]. Acta Ecol Sin, 2012, 32(1): 215–225. doi: 10.5846/stxb 201011261679. 徐琨, 李芳兰, 苟水燕, 等. 岷江干旱河谷25种植物一年生植株根系功能性状及相互关系 [J]. 生态学报, 2012, 32(1): 215–225. doi: 10.5846/stxb201011261679.
    [32] REN S J, YU G R, TAO B, et al. Leaf nitrogen and phosphorus stoi- chiometry across 654 terrestrial plant species in NSTEC [J]. Environ Sci, 2007, 28(12): 2665–2673. doi: 10.3321/j.issn:0250-3301.2007.12. 001. 任书杰, 于贵瑞, 陶波, 等. 中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究 [J]. 环境科学, 2007, 28(12): 2665– 2673. doi: 10.3321/j.issn:0250-3301.2007.12.001.
    [33] MA Y Z, ZHONG Q L, JIN B J, et al. Spatial changes and influencing factors of fine root carbon, nitrogen and phosphorus stoichiometry of plants in China [J]. Chin J Plant Ecol, 2015, 39(2): 159–166. doi: 10. 17521/cjpe.2015.0015. 马玉珠, 钟全林, 靳冰洁, 等. 中国植物细根碳、氮、磷化学计量学的空间变化及其影响因子 [J]. 植物生态学报, 2015, 39(2): 159–166. doi: 10.17521/cjpe.2015.0015.
    [34] AERTS R, CHAPIN F S. The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns [J]. Adv Ecol Re, 1999, 30: 1–67. doi: 10.1016/S0065-2504(08)60016-1.
    [35] ZHANG H W, MA J Y, SUN W, et al. Altitudinal variation in func- tional traits of Picea schrenkiana var. tianschanica and their relation- ship to soil factors in Tianshan Mountains, northwest China [J]. Acta Ecol Sin, 2010, 30(21): 5747–5758. 张慧文, 马剑英, 孙伟, 等. 不同海拔天山云杉叶功能性状及其与土壤因子的关系 [J]. 生态学报, 2010, 30(21): 5747–5758.
    [36] ZHOU P, GENG Y, MA W H, et al. Linkages of functional traits among plant organs in the dominant species of the Inner Mongolia grassland, China [J]. Chin J Plant Ecol, 2010, 34(1): 7–16. doi: 10.3773/j.issn. 1005-264x.2010.01.003. 周鹏, 耿燕, 马文红, 等. 温带草地主要优势植物不同器官间功能性状的关联 [J]. 植物生态学报, 2010, 34(1): 7–16. doi: 10.3773/j. issn.1005-264x.2010.01.003.
    [37] XIANG L, CHEN F Q, GENG M Y, et al. Response of leaf functional traits of shrubs to altitude in Rhododendron latoucheae communities in Mt. Jinggangshan, Jiangxi, China [J]. J Trop Subtrop Bot, 2019, 27(2): 129–138. doi: 10.11926/jtsb.3930. 向琳, 陈芳清, 耿梦娅, 等. 井冈山鹿角杜鹃群落灌木层植物叶功能性状对海拔梯度的响应 [J]. 热带亚热带植物学报, 2019, 27(2): 129–138. doi: 10.11926/jtsb.3930.
    [38] WRIGHT I J, REICH P B, WESTOBY M, et al. The worldwide leaf economics spectrum [J]. Nature, 2004, 428(6985): 821–827. doi: 10. 1038/nature02403.
    [39] CHEN Z Q, CHEN Z B, BAI L Y. Growth Characteristics and Ecolo- gical Restoration Effects of Dicranopteris dichotoma in the Eroded Red Soil Area of South China [M]. Beijing: Science Press, 2018: 33–37. 陈志强, 陈志彪, 白丽月. 南方红壤侵蚀区芒萁的生长特征与生态恢复效应 [M]. 北京: 科学出版社, 2018: 33–37.
    [40] WANG J Z. Functional traits of the leaves and roots of Dicranopteris dichotoma and their relationship with soil factors under different ages of erosion restoration in Southeast China [D]. Fuzhou: Fujian Normal University, 2019. doi: 10.27019/d.cnki.gfjsu.2019.001294. 王敬哲. 南方红壤侵蚀区不同治理年限下芒萁叶片与根系功能性状及其与土壤因子的关系 [D]. 福州: 福建师范大学, 2019. doi: 10.27019/d.cnki.gfjsu.2019.001294.
    [41] HU Y S, YAO X Y, LIU Y H. Specific leaf area and its influencing factors of forests at different succession stages in Changbai Mountains [J]. Acta Ecol Sin, 2015, 35(5): 1480–1487. doi: 10.5846/stxb201310 132459. 胡耀升, 么旭阳, 刘艳红. 长白山森林不同演替阶段比叶面积及其影响因子 [J]. 生态学报, 2015, 35(5): 1480–1487. doi: 10.5846/stxb 201310132459.
    [42] ZHANG L, LUO T X. Advances in ecological studies on leaf lifespan and associated leaf traits [J]. Acta Phytoecol Sin, 2004, 28(6): 844–852. 张林, 罗天祥. 植物叶寿命及其相关叶性状的生态学研究进展 [J]. 植物生态学报, 2004, 28(6): 844–852.
    [43] KRAMER-WALTER K R, BELLINGHAM P J, MILLAR T R, et al. Root traits are multidimensional: specific root length is independent from root tissue density and the plant economic spectrum [J]. J Ecol, 2016, 104(5): 1299–1310. doi: 10.1111/1365-2745.12562.
    [44] YESTE A, BLANCO J A, IMBERT J B, et al. Pinus sylvestris L. and Fagus sylvatica L. effects on soil and root properties and their interactions in a mixed forest on the southwestern Pyrenees [J]. For Ecol Manag, 2021, 481(4): 118726. doi: 10.1016/j.foreco.2020.118 726.
    [45] XING S L, DING Y, HUANG W J. Core Theory of Botany and Research on Protection and Utilization [M]. Beijing: China Water & Power Press, 2018: 58–65. 邢顺林, 丁燕, 黄文娟. 植物学核心理论及其保护与利用研究 [M]. 北京: 中国水利水电出版社, 2018: 58–65.
    [46] YAO T T, MENG T T, NI J, et al. Leaf functional trait variation and its relationship with plant phylogenic background and the climate in Xinjiang Junggar Basin, NW China [J]. Biodiv Sci, 2010, 18(2): 188– 197. 尧婷婷, 孟婷婷, 倪健, 等. 新疆准噶尔荒漠植物叶片功能性状的进化和环境驱动机制初探 [J]. 生物多样性, 2010, 18(2): 188–197.
    [47] BRADLEY R L, TITUS B D, PRESTON C M, et al. Improvement of nutritional site quality 13 years after single application of fertiliser N and P on regenerating cedar-hemlock cutovers on northern Vancouver Island, B.C. [J]. Plant Soil, 2000, 223(1/2): 197–208. doi: 10.1023/A: 1004896116130.
    [48] HUANG X, YAO L, WANG J, et al. Effect of soil nutrients on leaf functional traits of different life form plants [J]. Acta Bot Boreali- Occid Sin, 2018, 38(12): 2293–2302. doi: 10.7606/j.issn.1000-4025. 2018.12.2293. 黄小, 姚兰, 王进, 等. 土壤养分对不同生活型植物叶功能性状的影响 [J]. 西北植物学报, 2018, 38(12): 2293–2302. doi: 10.7606/j. issn.1000-4025.2018.12.2293.
    [49] WRIGHT I J, WESTOBY M, REICH P B. Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span [J]. J Ecol, 2002, 90(3): 534–543. doi: 10.1046/j.1365-2745.2002.00689.x.
    [50] WESTOBY M, FALSTER D S, MOLES A T, et al. Plant ecological strategies: Some leading dimensions of variation between species [J]. Annu Rev Ecol Syst, 2002, 33: 125–159. doi: 10.1146/annurev.ecolsys. 33.010802.150452.
    [51] FONSECA C R, OVERTON J M, COLLINS B, et al. Shifts in trait: Combinations along rainfall and phosphorus gradients [J]. J Ecol, 2000, 88(6): 964–977. doi: 10.1046/j.1365-2745.2000.00506.x.
    [52] TURNER I M. Sclerophylly: Primarily protective? [J]. Funct Ecol, 1994, 8(6): 669–675. doi: 10.2307/2390225.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郜鹏畅,陈志彪,陈志强,牛玉娇,区晓琳,王海燕.闽西南红壤侵蚀区黑莎草功能性状特征及其与土壤因子的关系[J].热带亚热带植物学报,2022,30(6):842~854

复制
分享
文章指标
  • 点击次数:147
  • 下载次数: 373
  • HTML阅读次数: 1008
  • 引用次数: 0
历史
  • 收稿日期:2021-09-28
  • 最后修改日期:2021-12-22
  • 在线发布日期: 2022-12-09
  • 出版日期: 2022-11-20
文章二维码