WOX转录因子在植物发育中的作用
作者:
基金项目:

中国科学院华南农业植物分子分析与遗传改良重点实验室开放课题(KF202008);国家自然科学基金项目(32071819)资助


Roles of WOX Transcription Factors in Plant Development
Author:
Fund Project:

The Open Project of Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences (Grant No. KF202008).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [90]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    WOX (WUSCHEL-related homeobox)转录因子与植物发育密切相关,包括植物胚胎发育和体胚发生、花和根发育、愈伤组织的形成和维持,以及干细胞维持等过程。越来越多的研究表明WOX在植物发育过程中扮演着极其重要的角色。WOX调控植物发育的机理研究在促进植物发育以及构建植物良好表型等研究提供了突破口。主要对WOX调控植物发育的相关研究进行综述,并结合表观遗传学调控,探讨了WOX调控植物发育的过程,以期为WOX转录因子调控植物的作用机制提供启示。

    Abstract:

    WOX (WUSCHEL-related homeobox) transcription factors (TFs) are closely associated with plant development, including embryogenesis, somatic embryogenesis, flower and root development, the initiation and maintenance of callus, and stem cell maintenance in plants. Increasing studies demonstrated that WOX TFs play a crucial role in plant development. Studied on the regulatory mechanisms of WOX in plant development provide a breakthrough in promoting plant development and constructing excellent plant phenotypes. The regulation of WOX TFs in plant development was reviewed, and the developmental processes by integrating WOX and epigenetic regulation were discussed, which aimed at providing inspiration for the mechanism of WOX TFs in regulating plant development.

    参考文献
    [1] LAUX T, MAYER K F, BERGER J, et al. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis[J]. Development, 1996, 122(1):87-96. doi:10.1242/dev.122.1.87.
    [2] IKEDA M, MITSUDA N, OHME-TAKAGI M. Arabidopsis WUS-CHEL is a bifunctional transcription factor that acts as a repressor in stem cell regulation and as an activator in floral patterning[J]. Plant Cell, 2009, 21(11):3493-3505. doi:10.1105/tpc.109.069997.
    [3] LIU X G, KIM Y J, MÜLLER R, et al. AGAMOUS terminates floral stem cell maintenance in Arabidopsis by directly repressing WUS-CHEL through recruitment of polycomb group proteins[J]. Plant Cell, 2011, 23(10):3654-3670. doi:10.1105/tpc.111.091538.
    [4] HAECKER A, GROß-HARDT R, GEIGES B, et al. Expression dyna-mics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana[J]. Development, 2004, 131(3):657-668. doi:10.1242/dev.00963.
    [5] SARKAR A K, LUIJTEN M, MIYASHIMA S, et al. Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers[J]. Nature, 2007, 446(7137):811-814. doi:10.1038/nature 05703.
    [6] MINH-THU P T, KIM J S, CHAE S, et al. A WUSCHEL homeobox transcription factor, OsWOX13, enhances drought tolerance and triggers early flowering in rice[J]. Mol Cells, 2018, 41(8):781-798. doi:10.14348/molcells.2018.0203.
    [7] ZHAO Y, HU Y, DAI M, et al. The WUSCHEL-related homeobox gene WOX11 is required to activate shoot-borne crown root development in rice[J]. Plant Cell, 2009, 21(3):736-748. doi:10.1105/tpc.108.061655.
    [8] DAI M, HU Y, ZHAO Y, et al. A WUSCHEL-LIKE HOMEOBOX gene represses a YABBY gene expression required for rice leaf development[J]. Plant Physiol, 2007, 144(1):380-390. doi:10.1104/pp.107.095737.
    [9] CHENG S, TAN F, LU Y, et al. WOX11 recruits a histone H3K27me3 demethylase to promote gene expression during shoot development in rice[J]. Nucl Acid Res, 2018, 46(5):2356-2369. doi:10.1093/nar/gky017.
    [10] LIANG Y. Expression analysis of DoWOX and DoSERK in Dendro-bium officinale during protocorm development[D]. Chengdu:South-west Jiaotong University, 2018.梁易.铁皮石斛原球茎发育过程中DoWOXDoSERK的表达分析[D].成都:西南交通大学, 2018.
    [11] LU Y, LIU Z Y, LYU M, et al. Characterization of JsWOX1 and JsWOX4 during callus and root induction in the shrub species Jasmi-num sambac[J]. Plants (Basel), 2019, 8(4):79. doi:10.3390/plants8040079.
    [12] STUURMAN J, JAGGI F, KUHLEMEIER C. Shoot meristem main-tenance is controlled by a GRAS-gene mediated signal from differen-tiating cells[J]. Genes Dev, 2002, 16(17):2213-2218. doi:10.1101/gad.230702.
    [13] KIEFFER M, STERN Y, COOK H, et al. Analysis of the transcription factor WUSCHEL and its functional homologue in Antirrhinum reveals a potential mechanism for their roles in meristem maintenance[J]. Plant Cell, 2006, 18(3):560-573. doi:10.1105/tpc.105.039107.
    [14] COSTANZO E, TREHIN C, VAN DEN BUSSCHE M. The role of WOX genes in flower development[J]. Ann Bot, 2014, 114(7):1545-1553. doi:10.1093/aob/mcu123.
    [15] West M, Harada J J. Embryogenesis in higher plants:An overview[J]. Plant Cell, 1993, 5(10):1361-1369. doi:10.1105/tpc.5.10.1361.
    [16] LENHARD M, JURGENS G, LAUX T. The WUSCHEL and SHOOT-MERISTEMLESS genes fulfil complementary roles in Arabidopsis shoot meristem regulation[J]. Development, 2002, 129(13):3195-3206. doi:10.1242/dev.129.13.3195.
    [17] CARROLL S B. Homeotic genes and the evolution of arthropods and chordates[J]. Nature, 1995, 376(6540):479-485. doi:10.1038/376479 a0.
    [18] GEHRING W J, MÜLLER M, AFFOLTER M, et al. The structure of the homeodomain and its functional implications[J]. Trends Genet, 1990, 6:323-329. doi:10.1016/0168-9525(90)90253-3.
    [19] GEHRING W J. Exploring the homeobox[J]. Gene, 1993, 135(1/2):215-221. doi:10.1016/0378-1119(93)90068-e.
    [20] ARIEL F D, MANAVELLA P A, DEZAR C A, et al. The true story of the HD-Zip family[J]. Trends Plant Sci, 2007, 12(9):419-426. doi:10. 1016/j.tplants.2007.08.003.
    [21] RICHARDT S, LANG D, RESKI R, et al. PlanTAPDB, a phylogeny-based resource of plant transcription-associated proteins[J]. Plant Physiol, 2007, 143(4):1452-1466. doi:10.1104/pp.107.095760.
    [22] PALOVAARA J, HAKMAN I. Conifer WOX-related homeodomain transcription factors, developmental consideration and expression dynamic of WOX2 during Picea abies somatic embryogenesis[J]. Plant Mol Biol, 2008, 66(5):533-549. doi:10.1007/s11103-008-9289-5.
    [23] NARDMANN J, WERR W. The invention of WUS-like stem cell-promoting functions in plants predates leptosporangiate ferns[J]. Plant Mol Biol, 2012, 78(1/2):123-134. doi:10.1007/s11103-011-9851-4.
    [24] VAN DER GRAAFF E, LAUX T, RENSING S A. The WUS homeo-box-containing (WOX) protein family[J]. Genome Biol, 2009, 10(12):248. doi:10.1186/gb-2009-10-12-248.
    [25] MUKHERJEE K, BÜRGLIN T R. Comprehensive analysis of animal TALE homeobox genes:New conserved motifs and cases of accelerated evolution[J]. J Mol Evol, 2007, 65(2):137-153. doi:10.1007/s00239-006-0023-0.
    [26] JI J B, SHIMIZU R, SINHA N, et al. Analyses of WOX4 transgenics provide further evidence for the evolution of the WOX gene family during the regulation of diverse stem cell functions[J]. Plant Signal Behav, 2010, 5(7):916-920. doi:10.4161/psb.5.7.12104.
    [27] DITENGOU F A, TEALE W D, KOCHERSPERGER P, et al. Mecha-nical induction of lateral root initiation in Arabidopsis thaliana[J]. Proc Natl Acad Sci USA, 2008, 105(48):18818-18823. doi:10.1073/pnas.0807814105.
    [28] DEYHLE F, SARKAR A K, TUCKER E J, et al. WUSCHEL regulates cell differentiation during anther development[J]. Dev Biol, 2007, 302(1):154-159. doi:10.1016/j.ydbio.2006.09.013.
    [29] VAN DENBUSSCHE M, HORSTMAN A, ZETHOF J, et al. Diffe-rential recruitment of WOX transcription factors for lateral develop-ment and organ fusion in petunia and Arabidopsis[J]. Plant Cell, 2009, 21(8):2269-2283. doi:10.1105/tpc.109.065862.
    [30] NARDMANN J, JI J B, WERR W, et al. The maize duplicate genes narrow sheath1 and narrow sheath2 encode a conserved homeobox gene function in a lateral domain of shoot apical meristems[J]. Development, 2004, 131(12):2827-2839. doi:10.1242/dev.01164.
    [31] SHIMIZU R, JI J B, KELSEY E, et al. Tissue specificity and evolution of meristematic WOX3 function[J]. Plant Physiol, 2009, 149(2):841-850. doi:10.1104/pp.108.130765.
    [32] LIN H, NIU L F, MCHALE N A, et al. Evolutionarily conserved repressive activity of WOX proteins mediates leaf blade outgrowth and floral organ development in plants[J]. Proc Natl Acad Sci USA, 2013, 110(1):366-371. doi:10.1073/pnas.1215376110.
    [33] Zhou J, Sun J b, Peng M. The research progresses of somatic embryogenesis in higher plant[J]. Chin Agric Sci Bull, 2008, 24(2):129-133.周键,孙建波,彭明.高等植物体细胞胚胎发生的研究进展[J].中国农学通报, 2008, 24(2):129-133.
    [34] SCHMIDT E D, GUZZO F, TOONEN M A, et al. A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos[J]. Development, 1997, 124(10):2049-2062. doi:10. 1242/dev.124.10.2049.
    [35] BIRNBAUM K D, ALVARADO A S. Slicing across kingdoms:Regeneration in plants and animals[J]. Cell, 2008, 132(4):697-710. doi:10.1016/j.cell.2008.01.040.
    [36] DODEMAN V L, DUCREUX G, KREIS M. Zygotic embryogenesis versus somatic embryogenesis[J]. J Exp Bot, 1997, 48(313):1493-1509.
    [37] MORDHORST A P, TOONEN M A J, DE VRIES S C. Plant embryo-genesis[J]. Crit Rev Plant Sci, 1997, 16(6):535-576. doi:10.1080/07352689709701959.
    [38] CHUGH A, KHURANA P. Gene expression during somatic embryo-genesis:Recent advances[J]. Curr Sci, 2002, 83(6):715-730.
    [39] BREUNINGER H, RIKIRSCH E, HERMANN M, et al. Differential expression of WOX genes mediates apical-basal axis formation in the Arabidopsis embryo[J]. Dev Cell, 2008, 14(6):867-876. doi:10. 1016/j.devcel.2008.03.008.
    [40] WU X L, CHORY J, WEIGEL D. Combinations of WOX activities regulate tissue proliferation during Arabidopsis embryonic develop-ment[J]. Dev Biol, 2007, 309(2):306-316. doi:10.1016/j.ydbio.2007. 07.019.
    [41] ZHANG T Q, LIAN H, ZHOU C M, et al. A two-step model for de novo activation of WUSCHEL during plant shoot regeneration[J]. Plant Cell, 2017, 29(5):1073-1087. doi:10.1105/tpc.16.00863.
    [42] LIPPMAN Z B, COHEN O, ALVAREZ J P, et al. The making of a compound inflorescence in tomato and related nightshades[J]. PLoS Biol, 2008, 6(11):e288. doi:10.1371/journal.pbio.0060288.
    [43] CHENG S F, HUANG Y L, ZHU N, et al. The rice WUSCHEL-related homeobox genes are involved in reproductive organ development, hormone signaling and abiotic stress response[J]. Gene, 2014, 549(2):266-274. doi:10.1016/j.gene.2014.08.003.
    [44] JÜRGENS G. Apical-basal pattern formation in Arabidopsis embryo-genesis[J]. EMBO J, 2001, 20(14):3609-3616. doi:10.1093/emboj/20. 14.3609.
    [45] LU P, PORAT R, NADEAU J A, et al. Identification of a meristem L1 layer-specific gene in Arabidopsis that is expressed during embryonic pattern formation and defines a new class of homeobox genes[J]. Plant Cell, 1996, 8(12):2155-2168. doi:10.1105/tpc.8.12.2155.
    [46] WETERINGS K, APUYA N R, BI Y P, et al. Regional localization of suspensor mRNAs during early embryo development[J]. Plant Cell, 2001, 13(11):2409-2425. doi:10.1105/tpc.010326.
    [47] ZUO J R, NIU Q W, FRUGIS G, et al. The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis[J]. Plant J, 2002, 30(3):349-359. doi:10.1046/j.1365-313X.2002.01289.x.
    [48] GALLOIS J L, NORA F R, MIZUKAMI Y, et al. WUSCHEL induces shoot stem cell activity and developmental plasticity in the root meristem[J]. Genes Dev, 2004, 18(4):375-380. doi:10.1101/gad.291204.
    [49] GALLOIS J L, WOODWARD C, REDDY G V, et al. Combined SHOOT MERISTEMLESS and WUSCHEL trigger ectopic organo-genesis in Arabidopsis[J]. Development, 2002, 129(13):3207-3217. doi:10.1242/dev.129.13.3207.
    [50] WANG F X, SHANG G D, WU L Y, et al. Chromatin accessibility dynamics and a hierarchical transcriptional regulatory network structure for plant somatic embryogenesis[J]. Dev Cell, 2020, 54(6):742-757.E8. doi:10.1016/j.devcel.2020.07.003.
    [51] CAIRNEY J, ZHENG L, COWELS A, et al. Expressed sequence tags from loblolly pine embryos reveal similarities with angiosperm embryogenesis[J]. Plant Mol Biol, 2006, 62(4-5):485-501. doi:10. 1007/s11103-006-9035-9.
    [52] WU X L, DABI T, WEIGEL D. Requirement of homeobox gene STIMPY/WOX9 for Arabidopsis meristem growth and maintenance[J]. Curr Biol, 2005, 15(5):436-440. doi:10.1016/j.cub.2004.12.079.
    [53] BRAND U, FLETCHER J C, HOBE M, et al. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity[J]. Science, 2000, 289(5479):617-619. doi:10.1126/science.289.5479. 617.
    [54] SCHOOF H, LENHARD M, HAECKER A, et al. The stem cell popu-lation of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes[J]. Cell, 2000, 100(6):635-644. doi:10.1016/s0092-8674(00)80700-x.
    [55] WAITES R, SIMON R. Signaling cell fate in plant meristems:Three clubs on one tousle[J]. Cell, 2000, 103(6):835-838. doi:10.1016/s0092-8674(00)00186-0.
    [56] HADFI K, SPETH V, NEUHAUS G. Auxin-induced developmental patterns in Brassica juncea embryos[J]. Development, 1998, 125(5):879-887. doi:10.1242/dev.125.5.879.
    [57] HE G M, ELLING A A, DENG X W. The epigenome and plant deve-lopment[J]. Annu Rev Plant Biol, 2011, 62:411-435. doi:10.1146/annurev-arplant-042110-103806.
    [58] ZHANG C L, WANG J F, WANG X, et al. UF, a WOX gene, regulates a novel phenotype of un-fused flower in tomato[J]. Plant Sci, 2020, 297:110523. doi:10.1016/j.plantsci.2020.110523.
    [59] DEVEAUX Y, TOFFANO-NIOCHE C, CLAISSE G, et al. Genes of the most conserved WOX clade in plants affect root and flower development in Arabidopsis[J]. BMC Evol Biol, 2008, 8:291. doi:10. 1186/1471-2148-8-291.
    [60] MATSUMOTO N, OKADA K. A homeobox gene, PRESSED FLOWER, regulates lateral axis-dependent development of Arabidopsis flowers[J]. Genes Dev, 2001, 15(24):3355-3364. doi:10.1101/gad. 931001.
    [61] SOUER E, VAN DER KROL A, KLOOS D, et al. Genetic control of branching pattern and floral identity during Petunia inflorescence development[J]. Development, 1998, 125(4):733-742. doi:10.1242/dev.125.4.733.
    [62] SCANLON M J, FREELING M. The narrow sheath leaf domain deletion:A genetic tool used to reveal developmental homologies among modified maize organs[J]. Plant J, 1998, 13(4):547-561.
    [63] REBOCHO A B, BLIEK M, KUSTERS E, et al. Role of EVER-GREEN in the development of the cymose petunia inflorescence[J]. Dev Cell, 2008, 15(3):437-447. doi:10.1016/j.devcel. 2008.08.007.
    [64] GALUN E. Patterning of flowers and their members[M]//GALUN E. Plant Patterning. Singapore:World Scientific, 2007:383-440. doi:10. 1142/9789812778840_0012.
    [65] ZHANG T, LI R N, XING J L, et al. The YUCCA-Auxin-WOX11 module controls crown root development in rice[J]. Front Plant Sci, 2018, 9:523. doi:10.3389/fpls.2018.00523.
    [66] LIU J C, SHENG L H, XU Y Q, et al. WOX11 and 12 are involved in the first-step cell fate transition during de novo root organogenesis in Arabidopsis[J]. Plant Cell, 2014, 26(3):1081-1093. doi:10.1105/tpc. 114.122887.
    [67] SUER S, AGUSTI J, SANCHEZ P, et al. WOX4 imparts auxin respon-siveness to cambium cells in Arabidopsis[J]. Plant Cell, 2011, 23(9):3247-3259. doi:10.1105/tpc.111.087874.
    [68] ZHAO S, JIANG Q T, MA J, et al. Characterization and expression analysis of WOX5 genes from wheat and its relatives[J]. Gene, 2014, 537(1):63-69. doi:10.1016/j.gene.2013.12.022.
    [69] IOIO R D, LINHARES F S, SABATINI S. Emerging role of cytokinin as a regulator of cellular differentiation[J]. Curr Opin Plant Biol, 2008, 11(1):23-27. doi:10.1016/j.pbi.2007.10.006.
    [70] DE SMET I, JÜRGENS G. Patterning the axis in plants-auxin in control[J]. Curr Opin Genet Dev, 2007, 17(4):337-343. doi:10.1016/j.gde.2007.04.012.
    [71] INUKAI Y, SAKAMOTO T, UEGUCHI-TANAKA M, et al. Crown rootless1, which is essential for crown root formation in rice, is a target of an AUXIN RESPONSE FACTOR in auxin signaling[J]. Plant Cell, 2005, 17(5):1387-1396. doi:10.1105/tpc.105.030981.
    [72] MENG W J, CHENG Z J, SANG Y L, et al. Type-B ARABIDOPSIS RESPONSE REGULATORs specify the shoot stem cell niche by dual regulation of WUSCHEL[J]. Plant Cell, 2017, 29(6):1357-1372. doi:10.1105/tpc.16.00640.
    [73] LIU J, HU X M, QIN P, et al. The WOX11-LBD16 pathway promotes pluripotency acquisition in callus cells during de novo shoot regene-ration in tissue culture[J]. Plant Cell Physiol, 2018, 59(4):739-748. doi:10.1093/pcp/pcy010.
    [74] Liu L, Wang Y, Shi Z Y, et al. Advances in plant stem cell culture[J]. Chin J Biotechnol, 2018, 34(11):1734-1741. doi:10.13345/j.cjb.180047.刘连,王义,史植元,等.植物干细胞培养研究进展[J].生物工程学报, 2018, 34(11):1734-1741. doi:10.13345/j.cjb.180047.
    [75] MAYER K F X, SCHOOF H, HAECKER A, et al. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem[J]. Cell, 1998, 95(6):805-815. doi:10.1016/s0092-8674(00)81703-1.
    [76] LEIBFRIED A, TO J P C, BUSCH W, et al. WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators[J]. Nature, 2005, 438(7071):1172-1175. doi:10.1038/nature04270.
    [77] ZHOU Y, LIU X, ENGSTROM E M, et al. Control of plant stem cell function by conserved interacting transcriptional regulators[J]. Nature, 2015, 517(7534):377-380. doi:10.1038/nature13853.
    [78] SU Y H, ZHOU C, LI Y J, et al. Integration of pluripotency pathways regulates stem cell maintenance in the Arabidopsis shoot meristem[J]. Proc Natl Acad Sci USA, 2020, 117(36):22561-22571. doi:10.1073/pnas.2015248117.
    [79] STAHL Y, WINK R H, INGRAM G C, et al. A signaling module controlling the stem cell niche in Arabidopsis root meristems[J]. Curr Biol, 2009, 19(11):909-914. doi:10.1016/j.cub.2009.03.060.
    [80] CHANDLER J, NARDMANN J, WERR W. Plant development revolves around axes[J]. Trends Plant Sci, 2008, 13(2):78-84. doi:10.1016/j. tplants.2007.11.010.
    [81] IWASAKI M, PASZKOWSKI J. Epigenetic memory in plants[J]. EMBO J, 2014, 33(18):1987-1098. doi:10.15252/embj.201488883.
    [82] SERMAN A, VLAHOVIĆ M, SERMAN L, et al. DNA methylation as a regulatory mechanism for gene expression in mammals[J]. Coll Antropol, 2006, 30(3):665-671.
    [83] XING L B, LI Y M, QI S Y, et al. Comparative RNA-sequencing and DNA methylation analyses of apple (Malus domestica Borkh.) buds with diverse flowering capabilities reveal novel insights into the regulatory mechanisms of flower bud formation[J]. Plant Cell Physiol, 2019, 60(8):1702-1721. doi:10.1093/pcp/pcz080.
    [84] XING L B, QI S Y, ZHOU H, et al. Epigenomic regulatory mechanism in vegetative phase transition of Malus hupehensis[J]. J Agric Food Chem, 2020, 68(17):4812-4829. doi:10.1021/acs.jafc.0c00478.
    [85] LI W, LIU H, CHENG Z J, et al. DNA methylation and histone modifications regulate De novo shoot regeneration in Arabidopsis by modulating WUSCHEL expression and auxin signaling[J]. PLoS Genet, 2011, 7(8):e1002243. doi:10.1371/journal.pgen.1002243.
    [86] LIAN G B, DING Z W, WANG Q, et al. Origins and evolution of WUSCHEL-related homeobox protein family in plant kingdom[J]. Sci World J, 2014, 2014:534140. doi:10.1155/2014/534140.
    [87] BERTRAND C, BERGOUNIOUX C, DOMENICHINI S, et al. Arabi-dopsis histone acetyltransferase AtGCN5 regulates the floral meristem activity through the WUSCHEL/AGAMOUS pathway[J]. J Biol Chem, 2003, 278(30):28246-28251. doi:10.1074/jbc.M302787200.
    [88] SALVINI M, FAMBRINI M, GIORGETTI L, et al. Molecular aspects of zygotic embryogenesis in sunflower (Helianthus annuus L.):Correlation of positive histone marks with HaWUS expression and putative link HaWUS/HaL1L[J]. Planta, 2016, 243(1):199-215. doi:10.1007/s00425-015-2405-2.
    [89] PI L M, AICHINGER E, VAN DER GRAAFF E, et al. Organizer-derived WOX5 signal maintains root columella stem cells through chromatin-mediated repression of CDF4 expression[J]. Dev Cell, 2015, 33(5):576-588. doi:10.1016/j.devcel.2015.04.024.
    [90] IKEUCHI M, IWASE A, SUGIMOTO K. Control of plant cell diffe-rentiation by histone modification and DNA methylation[J]. Curr Opin Plant Biol, 2015, 28:60-67. doi:10.1016/j.pbi.2015.09.004.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

曾丹琦,何春梅,俞振明,司灿,陈璟,黄磊,李冬妹,段俊. WOX转录因子在植物发育中的作用[J].热带亚热带植物学报,2022,30(5):742~752

复制
分享
文章指标
  • 点击次数:367
  • 下载次数: 638
  • HTML阅读次数: 988
  • 引用次数: 0
历史
  • 收稿日期:2021-09-03
  • 最后修改日期:2022-03-07
  • 录用日期:2022-03-10
  • 在线发布日期: 2022-09-26
文章二维码