海南岛滨海沙生植物叶片功能性状分异及其与土壤因子的关系
作者:
基金项目:

中国林业科学研究院基本科研业务专项项目(CAFYBB2018MB015)资助


Difference of Leaf Functional Traits of Coastal Psammophytes in Hainan Island and Its Relationship with Soil Chemical Properties
Author:
Fund Project:

Fundamental research Funds of CAF(Grant No. CAFYBB2018MB015)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [42]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为探讨滨海沙生植物对环境的适应策略,对海南岛滨海沙生植物单叶蔓荆、苦郎树、马缨丹、飞机草、假马鞭、厚藤的叶片主要功能性状分异特征及其土壤因子的关系进行了研究。结果表明,热带滨海沙生植物叶片功能性状存在明显的种间分异,叶片功能性状不仅受植物种类的影响,还受土壤因子影响;比叶面积呈现草本>灌木>藤本的规律;叶片的N/P为7.78~ 10.85,热带滨海沙生植物生长受土壤氮限制;叶片功能性状中Na含量的变异系数最大(18.46%~76.36%),说明不同植物对Na+的吸收存在较大差异,这将影响其在滨海沙地的自然分布;比叶面积、叶干物质含量与叶片的K、Na含量呈负相关,叶N/P与土壤Na+含量呈负相关,叶片Na+含量与土壤有机质、全磷、全钾呈负相关,土壤盐分限制植物对氮磷的吸收,滨海沙生植物通过比叶面积变化来适应盐胁迫。因此,在滨海沙生植被恢复中,施加土壤肥力是其快速恢复的重要措施,叶片Na+含量可作为滨海沙生植物耐盐性筛选的主要指标。

    Abstract:

    Leaf functional traits are closely related to plant growth strategies and resource utilization ability. In order to explore the adaptation strategies of psammophytes to environment in Hainan Island, the leaf functional traits of Vitex trifolia, Clerodendrum inerme, Lantana camara, Eupatorium odoratum, Stachytarpheta jamaicensis and Ipomoea pes-caprae and their relationships with soil chemical properties were analyzed. The results showed that the leaf functional traits of tropical psammophytes were different among species, which were affected not only by species but also by soil factors. The specific leaf area of species were in the order of herb>shrub>vine. The N/P ratio of leaves ranged from 7.78 to 10.85, suggesting that the growth of tropical psammophytes was restricted by soil N. The variation coefficient of Na content in leaves was the highest, ranging from 18.46% to 76.36%, indicating that species had a great difference in the absorption of Na+, which would affect its natural distribution in coastal sandy land. The specific leaf area, leaf dry matter content had negative correlations with K and Na contents in leaves, as well as N/P ratio of leaves with Na content in soil, Na content in leaves with soil organic carbon, total P and total K, implying that sandy plants adapted to salt stress through specific leaf area change. Therefore, applying soil fertilizer would be an important measure for rapid restoration of coastal sandy vegetation, and the Na+ content in leaves could be used as the main index for salt-tolerance screening of sandy plants in tropical coast.

    参考文献
    [1] MENG T T, NI J, WANG G H. Plant functional traits, environments and ecosystem functioning[J]. Chin J Plant Ecol, 2007, 31(1):150-165. doi:10.17521/cjpe.2007.0019.孟婷婷,倪健,王国宏.植物功能性状与环境和生态系统功能[J].植物生态学报, 2007, 31(1):150-165. doi:10.17521/cjpe.2007.0019.
    [2] VENDRAMINI F, DÍAZ S, GURVICH D E, et al. Leaf traits as indicators of resource-use strategy in floras with succulent species[J]. New Phytol, 2002, 154(1):147-157. doi:10.1046/j.1469-8137.2002. 00357.x.
    [3] CHEN W, WANG J H, MA R J, et al. Variance in leaf functional traits of 89 species from the Guangdong of China[J]. Chin J Ecol, 2016, 35(8):2101-2109. doi:10.13292/j.1000-4890.201608.033.陈文,王桔红,马瑞君,等.粤东89种常见植物叶功能性状变异特征[J].生态学杂志, 2016, 35(8):2101-2109. doi:10.13292/j.1000-4890.201608.033.
    [4] ZHAO X W, WANG Y F, MA W M. The relationship of transpiration rate with leaf characters of Thermopsis lanceolate in different slopes of an alpine meadow[J]. Acta Ecol Sin, 2019, 39(7):2494-2500. doi:10. 5846/stxb201801170131.赵夏纬,王一峰,马文梅.高寒草地不同坡向披针叶黄华蒸腾速率与叶性状的关系[J].生态学报, 2019, 39(7):2494-2500. doi:10. 5846/stxb201801170131.
    [5] RODERICK M L, BERRY S L, NOBLE I R. A framework for understanding the relationship between environment and vegetation based on the surface area to volume ratio of leaves[J]. Funct Ecol, 2000, 14(4):423-437. doi:10.1046/j.1365-2435.2000.00438.x.
    [6] REICH P B, ELLSWORTH D S, WALTERS M B, et al. Generality of leaf trait relationships:A test across six biomes[J]. Ecology, 1999, 80(6):1955-1969. doi:10.1890/0012-9658(1999)080[1955:GOLTRA] 2.0.CO;2.
    [7] WRIGHT I J, REICH P B, WESTOBY M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428(6985):821-827. doi:10. 1038/nature02403.
    [8] LI F L, BAO W K, WU N. Morphological and physiological responses of current Sophora davidii seedlings to drought stress[J]. Acta Ecol Sin, 2009, 29(10):5406-5416. doi:10.3321/j.issn:1000-0933.2009.10.027.李芳兰,包维楷,吴宁.白刺花幼苗对不同强度干旱胁迫的形态与生理响应[J].生态学报, 2009, 29(10):5406-5416. doi:10.3321/j. issn:1000-0933.2009.10.027.
    [9] LI J. Plant population dynamics and ecological stoichiometry of man-grove in Beilun estuary in Guangxi[D]. Nanning:Guangxi Teachers Education University, 2017.黎洁.广西北仑河口红树林植物种群动态与生态化学计量特征研究[D].南宁:广西师范学院, 2017.
    [10] REICH P B, UHL C, WALTERS M B, et al. Leaf demography and phenology in Amazonian rain forest:A census of 40000 leaves of 23 tree species[J]. Ecol Monogr, 2004, 74(1):3-23. dio:10.1890/02-4047.
    [11] CHEN G J, LIU W G, XU Y C, et al. Evaluation of salt spray tolerance of 9 coastal plants[J]. J For Environ, 2018, 38(3):341-347. doi:10. 13324/j.cnki.jfcf.2018.03.013.陈国军,刘维刚,徐迎春,等. 9种滨海植物盐雾的耐性评价[J].森林与环境学报, 2018, 38(3):341-347. doi:10.13324/j.cnki.jfcf.2018. 03.013.
    [12] SCHEIBER S M, SANDROCK D, ALVAREZ E, et al. Effect of salt spray concentration on growth and appearance of'Gracillimus'maiden grass and'Hamelin'fountain grass[J]. Hort Technol, 2008, 18(1):34-38. doi:10.21273/HORTTECH.18.1.34.
    [13] ZHANG S H, ZHANG Y, XIONG K N, et al. Changes of leaf functional traits in karst rocky desertification ecological environment and the driving factors[J]. Glob Ecol Conserv, 2020, 24:e01381. doi:10.1016/j.gecco.2020.e01381.
    [14] HE P C, YE Q. Plant functional traits:From individual plant to global scale[J]. J Trop Subtrop Bot, 2019, 27(5):523-533. doi:10.11926/jtsb. 4108.贺鹏程,叶清.基于植物功能性状的生态学研究进展:从个体水平到全球尺度[J].热带亚热带植物学报, 2019, 27(5):523-533. doi:10.11926/jtsb.4108.
    [15] LI S J, WANG H, GOU W, et al. Leaf functional traits of dominant desert plants in the Hexi Corridor, northwestern China:Trade-off relationships and adversity strategies[J]. Glob Ecol Conserv, 2021, 28:e01666. doi:10.1016/j.gecco.2021.e01666.
    [16] SHIPLEY B, DE BELLO F, CORNELISSEN J H C, et al. Reinforcing loose foundation stones in trait-based plant ecology[J]. Oecologia, 2016, 180(4):923-931. doi:10.1007/s00442-016-3549-x.
    [17] WANG W Q, CHEN Y F, LI Q Q, et al. Coastal Sand Plant Resources and Vegetation Restoration of South China[M]. Xiamen:Xiamen University Press, 2016.王文卿,陈洋芳,李芊芊,等.南方滨海沙生植物资源及沙地植被修复[M].厦门:厦门大学出版社, 2016.
    [18] HUANG Y Q, WANG J J, ZHANG R T, et al. The resources and protection of psammophilous vegetation on coasts in Xiamen Guan-yinshan, Fujian Province[J]. Subtrop Plant Sci, 2013, 42(1):73-76. doi:10.3969/j.issn.1009-7791.2013.01.016.黄雅琴,王建军,张娆挺,等.厦门观音山海岸沙生植被资源现状及保护对策[J].亚热带植物科学, 2013, 42(1):73-76. doi:10.3969/j.issn.1009-7791.2013.01.016.
    [19] LI L, JIA Z Q, ZHU Y J, et al. Research advances on drought resistance mechanism of plant species in arid area of China[J]. J Dese Res, 2010, 30(5):1053-1059.李磊,贾志清,朱雅娟,等.我国干旱区植物抗旱机理研究进展[J].中国沙漠, 2010, 30(5):1053-1059.
    [20] ZHOU L L, LIU P, WANG J. Nutritive organs anatomical structure of two species of Limonium in Xinjiang[J]. Acta Bot Boreali-Occid Sin, 2007, 27(6):1127-1133. doi:10.3321/j.issn:1000-4025.2007.06.010.周玲玲,刘萍,王军.新疆2种盐生补血草营养器官的解剖学研究[J].西北植物学报, 2007, 27(6):1127-1133. doi:10.3321/j.issn:1000-4025.2007.06.010.
    [21] DU J H, LIU A L, DONG Y X, et al. Architectural characteristics of roots in typical coastal psammophytes of south China[J]. Chin J Plant Ecol, 2014, 38(8):888-895. doi:10.3724/SP.J.1258.2014.00083.杜建会,刘安隆,董玉祥,等.华南海岸典型沙生植物根系构型特征[J].植物生态学报, 2014, 38(8):888-895. doi:10.3724/SP.J.1258. 2014.00083.
    [22] POORTER H, DE JONG R. A comparison of specific leaf area, chemical composition and leaf construction costs of field plants from 15 habitats differing in productivity[J]. New Phytol, 1999, 143(1):163-176. doi:10.1046/j.1469-8137.1999.00428.x.
    [23] WILSON P J, THOMPSON K, HODGSON J G. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies[J]. New Phytol, 1999, 143(1):155-162. doi:10.1046/j.1469-8137.1999. 00427.x.
    [24] CORNELISSEN J H C, SIBMA F, VAN LOGTESTIJN R S P, et al. Leaf pH as a plant trait:Species-driven rather than soil-driven variation[J]. Fun Ecol, 2011, 25(3):449-455. doi:10.1111/j.1365-2435.2010. 01765.x.
    [25] KOERSELMAN W, MEULEMAN A F M. The vegetation N:P ratio:A new tool to detect the nature of nutrient limitation[J]. J Appl Ecol, 1996, 33(6):1441-1450. doi:10.2307/2404783.
    [26] AN D, CHEN J G, GAO Y Q, et al. AtHKT1 drives adaptation of Arabidopsis thaliana to salinity by reducing floral sodium content[J]. PLoS Genet, 2017, 13(10):e1007086. doi:10.1371/journal.pgen.1007086.
    [27] LI W T, ZHANG M J, ZHANG J B, et al. GIS-based small-grid simulation of climate resources in Hainan Island[J]. Chin J Trop Agric, 2020, 40(9):83-93. doi:10.12008/j.issn.1009-2196.2020.09.015.李文韬,张明洁,张京红,等.基于GIS的海南岛气候资源小网格推算研究[J].热带农业科学, 2020, 40(9):83-93. doi:10.12008/j. issn.1009-2196.2020.09.015.
    [28] CORNELISSEN J H C, LAVOREL S, GARNIER E, et al. A handbook of protocols for standardized and easy measurement of plant functional traits worldwide[J]. Aust J Bot, 2003, 51(4):335-380. doi:10.1071/BT02124.
    [29] POORTER H, NIINEMETSÜ, POORTER L, et al. Causes and conse-quences of variation in leaf mass per area (LMA):A meta-analysis[J]. New Phytol, 2009, 182(3):565-588. doi:10.1111/j.1469-8137.2009. 02830.x.
    [30] THUILLER W, LAVOREL S, MIDGLEY G, et al. Relating plant traits and species distributions along bioclimatic gradients for 88Leucaden-dron taxa[J]. Ecology, 2004, 85(6):1688-1699. doi:10.1890/03-0148.
    [31] LI Y L, CUI J Y, SU Y Z. Specific leaf area and leaf dry matter content of some plants in different dune habitats[J]. Acta Ecol Sin, 2005, 25(2):304-311. doi:10.3321/j.issn:1000-0933.2005.02.019.李玉霖,崔建垣,苏永中.不同沙丘生境主要植物比叶面积和叶干物质含量的比较[J].生态学报, 2005, 25(2):304-311. doi:10.3321/j. issn:1000-0933.2005.02.019.
    [32] REN H, JIAN S G, ZHANG Q M, et al. Plants and vegetation on South China Sea Islands[J]. Ecol Environ Sci, 2017, 26(10):1639-1648. doi:10.16258/j.cnki.1674-5906.2017.10.001.任海,简曙光,张倩媚,等.中国南海诸岛的植物和植被现状[J].生态环境学报, 2017, 26(10):1639-1648. doi:10.16258/j.cnki.1674-5906.2017.10.001.
    [33] CERNUSAK L A, WINTER K, TURNER B L. Leaf nitrogen to phosphorus ratios of tropical trees:Experimental assessment of physio-logical and environmental controls[J]. New Phytol, 2010, 185(3):770-779. doi:10.1111/j.1469-8137.2009.03106.x.
    [34] JIA J, BAI J H, WANG W, et al. Changes of biogenic elements in Phragmites australis and Suaeda salsa from salt marshes in Yellow River delta, China[J]. Chin Geogr Sci, 2018, 28(3):411-419. doi:10. 1007/s11769-018-0959-1.
    [35] LU L M, YANG T Z. Potassium transporters and their molecular regulation in higher plants[J]. Acta Bot Boreali-Occid Sin, 2006, 26(11):2402-2410. doi:10.3321/j.issn:1000-4025.2006.11.034.鲁黎明,杨铁钊.高等植物K+吸收转运蛋白及其分子调节[J].西北植物学报, 2006, 26(11):2402-2410. doi:10.3321/j.issn:1000-4025. 2006.11.034.
    [36] CORNWELL W K, SCHWILK D W, ACKERLY D D. A trait-based test for habitat filtering:Convex hull volume[J]. Ecology, 2006, 87(6):1465-1471. doi:10.1890/0012-9658(2006)87[1465:ATTFHF]2.0.CO;2.
    [37] Guangdong Institute of Botany. Flora of Hainan, Vol. 4[M]. Beijing:Science Press, 1977.广东省植物研究所.海南植物志,第4卷[M].北京:科学出版社, 1977.
    [38] WU M L, ZHU J, ZHU Q, et al. Analysis of leaf functional traits and functional diversity of woody plants in evergreen and deciduous broad-leaved mixed forest of Xingdoushan[J]. Acta Bot Boreali-Occid Sin, 2019, 39(9):1678-1691. doi:10.7606/j.issn.1000-4025.2019.09. 1678.吴漫玲,朱江,朱强,等.星斗山常绿落叶阔叶混交林木本植物叶功能性状及其多样性特征分析[J].西北植物学报, 2019, 39(9):1678-1691. doi:10.7606/j.issn.1000-4025.2019.09.1678.
    [39] WANG L Q, SHAO M A. The salt influx, transport and accumulation in higher plant[J]. Agric Res Arid Areas, 2005, 23(5):244-249. doi:10.3321/j.issn:1000-7601.2005.05.048.王林权,邵明安.高等植物对Na+的吸收、运输和累积[J].干旱地区农业研究, 2005, 23(5):244-249. doi:10.3321/j.issn:1000-7601. 2005.05.048.
    [40] CHEN P C, CHEN X F, MA B J, et al. Na+ homeostasis and salt tolerance of plants[J]. J Zhejiang Norm Univ (Nat Sci), 2016, 39(2):207-214. doi:10.16218/j.issn.1001-5051.2016.02.014.陈鹏程,陈析丰,马伯军,等.植物耐盐性与Na+动态平衡研究进展[J].浙江师范大学学报(自然科学版), 2016, 39(2):207-214. doi:10. 16218/j.issn.1001-5051.2016.02.014.
    [41] REN Z B, WANG Z G, NIE Q J, et al. Effect of salt stress on growth and ion contents in Weigela florida cuttings[J]. J NE For Univ, 2011, 39(5):24-26. doi:10.3969/j.issn.1000-5382.2011.05.008.任志彬,王志刚,聂庆娟,等.盐胁迫对锦带花幼苗生长及不同部位Na+、K+、Ca2+、Mg2+离子质量分数的影响[J].东北林业大学学报, 2011, 39(5):24-26. doi:10.3969/j.issn.1000-5382.2011.05.008.
    [42] MU J. The effects of nutrient on salt tolerance and growth of sweet sorghum in salinity region[D]. Beijing:University of Chinese Academy of Sciences, 2013.穆静.养分对盐碱区甜高粱耐盐性和生长的影响[D].北京:中国科学院大学, 2013.
    引证文献
引用本文

王旭,刘敬坤,罗水星,赵坤坤,李新建.海南岛滨海沙生植物叶片功能性状分异及其与土壤因子的关系[J].热带亚热带植物学报,2022,30(5):708~717

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-09-03
  • 最后修改日期:2021-12-10
  • 录用日期:2022-05-10
  • 在线发布日期: 2022-09-26
文章二维码