雌雄异株植物长梗柳传粉系统和生殖策略研究
作者:
基金项目:

国家自然科学基金项目(31800466, 32171813)资助


Pollination System and Reproductive Allocation Strategies of Dioecious Tree Salix dunnii
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [46]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为探讨长梗柳(Salix dunnii)的传粉系统和不同性别的生殖投资策略,对居群性别比例、花部特征和访花昆虫进行了调查和观察,采用气相色谱-质谱联用技术(GC-MS)检测了花序的挥发性成分。结果表明,东边村居群的性别比例显著偏雄性(♂∶♀=1.28∶1, P < 0.05), 郭墩村和高地村的居群的性别比偏离不显著; 长梗柳雄株枝条的花序数显著多于雌株, 单花序的雄花数显著多于雌花, 雌花序平均长度显著大于雄花序; 长梗柳传粉系统是虫媒和风媒混合传粉系统, 主要访花昆虫为中华蜜蜂(Apis cerana)且显著偏好访问雌花; 吸引中华蜜蜂的挥发成分β-石竹烯的相对含量在雌花序中显著高于雄花序, 雌花序还具有β-榄香烯和芳香醇等吸引中华蜜蜂的特有挥发成分。因此, 长梗柳雄株在开花阶段投入了较多的资源产生雄花, 可能利于风媒传粉; 而雌株通过增加吸引传粉者的挥发成分来抵抗“传粉者限制”的效应, 可能利于虫媒传粉, 通过风媒和虫媒有效组合提升其繁殖效率。

    Abstract:

    To investigate the pollination system and reproductive investment strategies of Salix dunnii, the floral characteristics of flower and catkin and population sex ratio were investigated, the visiting insects were collected and their visiting frequency was calculated, the fruit and seed sets were calculated by bagging test, the volatile components of catkin were determined by gas chromatography-mass spectrometry (GC-MS). The results showed that the sex ratio of population in Dongbian Village was significantly male-biased (♂∶♀=1.28∶1, P < 0.05), while it was in equilibrium in populations of Guodun and Gaodi Village. The catkin number of male branches was significantly higher than that of female branches (P < 0.05), and the male flowers per catkins were significantly more than female flowers (P < 0.001), but the average length of female catkins was notably longer than that of male catkins (P < 0.001). Salix dunnii was wind- and insect-pollination, Apis cerana was the main visitor, which showed significant preference to visit female individuals (P < 0.001). The relative content of β-caryophylene in female, which is attractive to A. cerana, was significantly higher than the male (P < 0.001). Furthermore, β-elemene and linalool were only identified in female catkins, which were attractive to honey bee too. Therefore, it was suggested that male S. dunnii allocated more resource in producing male flowers at flowering stage, which was probably beneficial for wind-pollination, while female plants fought against the "pollinator limitation" by increasing the variety and output of volatile to improve insect-pollination. Salix dunnii possibly improve the reproductive efficiency via the combination of wind- and insect-pollination.

    参考文献
    [1] RENNER S S. The relative and absolute frequencies of angiosperm sexual systems: Dioecy, monoecy, gynodioecy, and an updated online database [J]. Am J Bot, 2014, 101(10): 1588–1596. doi: 10.3732/ajb.1400196.
    [2] PENG D L, ZHANG Z Q, NIU Y, et al. Advances in the studies of reproductive strategies of alpine plants [J]. Biodiv Sci, 2012, 20(3): 286–299. doi: 10.3724/SP.J.1003.2012.14039. 彭德力, 张志强, 牛洋, 等. 高山植物繁殖策略的研究进展[J]. 生物多样性, 2012, 20(3): 286–299. doi: 10.3724/SP.J.1003.2012.14039.
    [3] BOECKLEN W J, PRICE P W, MOPPER S. Sex and drugs and herbivores: Sex-biased herbivory in arroyo willow (Salix lasiolepis) [J]. Ecology, 1990, 71(2): 581–588. doi: 10.2307/1940311.
    [4] FREEMAN D C, KLIKOFF L G, HARPER K T. Differential resource utilization by the sexes of dioecious plants [J]. Science, 1976, 193 (4253): 597–599. doi: 10.1126/science.193.4253.597.
    [5] ZHANG D Y. Plant Life History Evolution and Reproductive Ecology [M]. Beijing: Science Press, 2004. 张大勇. 植物生活史进化与繁殖生态学[M]. 北京: 科学出版社, 2004.
    [6] HUTCHINGS M J. Resource allocation patterns in clonal herbs and their consequences for growth [M]// BAZZAZ F A, GRACE J. Plant Resource Allocation. San Diego: Academic Press, 1997: 161–181. doi: 10.1016/B978-012083490-7/50008-6.
    [7] TAMURA S, KUDO G. Wind pollination and insect pollination of two temperate willow species, Salix miyabeana and Salix sachalinensis [J]. Plant Ecol, 2000, 147(2): 185–192. doi: 10.1023/A:1009870521175.
    [8] SINCLAIR J P, EMLEN J, FREEMAN D C. Biased sex ratios in plants: Theory and trends [J]. Bot Rev, 2012, 78(1): 63–86. doi: 10.1007/s12229-011-9065-0.
    [9] BURD M, ALLEN T F H. Sexual allocation strategy in wind-pollinated plants [J]. Evolution, 1988, 42(2): 403–407. doi: 10.1111/j.1558-5646.1988.tb04145.x.
    [10] WHITEHEAD D R. Wind pollination: Some ecological and evolutionary perspectives [M]// REAL L. Pollination Biology. Orlando: Academic Press, 1983. doi: 10.1016/B978-0-12-583980-8.50012-0.
    [11] WANG Q, DENG H P, DING B, et al. Comparison of floral morphology and pollination characteristics between the sexes in Eurya obtusifolia [J]. Acta Ecol Sin, 2012, 32(12): 3921–3930. doi: 10.5846/stxb201108081162. 王茜, 邓洪平, 丁博, 等. 钝叶柃不同性别花的花部形态与传粉特征比较[J]. 生态学报, 2012, 32(12): 3921–3930. doi: 10.5846/stxb201108081162.
    [12] CHARLESWORTH D. Why are unisexual flowers associated with wind pollination and unspecialized pollinators? [J]. Am Nat, 1993, 141 (3): 481–490. doi: 10.1086/285485.
    [13] TOLLSTEN L, KNUDSEN J T. Floral scent in dioecious Salix (Salicaceae): A cue determining the pollination system? [J]. Plant Syst Evol, 1992, 182(3/4): 229–237. doi: 10.1007/BF00939189.
    [14] HEMBORG Å M, BOND W J. Different rewards in female and male flowers can explain the evolution of sexual dimorphism in plants [J]. Biol J Linn Soc, 2005, 85(1): 97–109. doi: 10.1111/j.1095-8312.2005.00477.x.
    [15] WILLSON M F, ÅGREN J. Differential floral rewards and pollination by deceit in unisexual flowers [J]. Oikos, 1989, 55(1): 23–29. doi: 10.2307/3565868.
    [16] DUFA? M, ANSTETT M C. Cheating is not always punished: Killer female plants and pollination by deceit in the dwarf palm Chamaerops humilis [J]. J Evol Biol, 2004, 17(4): 862–868. doi: 10.1111/j.1420-9101.2004.00714.x
    [17] KNAUER A C, SCHIESTL F P. Bees use honest floral signals as indicators of reward when visiting flowers [J]. Ecol Lett, 2015, 18(2): 135–143. doi: 10.1111/ele.12386.
    [18] SRINIVASAN M V, ZHANG S W, ZHU H. Honeybees link sights to smells [J]. Nature, 1998, 396(6712): 637–638. doi: 10.1038/25272.
    [19] DÖTTERL S, GLÜCK U, JÜRGENS A, et al. Floral reward, advertisement and attractiveness to honey bees in dioecious Salix caprea [J]. PLoS One, 2014, 9(3): e93421. doi: 10.1371/journal.pone.0093421.
    [20] ELMQVIST T, ÅGREN J, TUNLID A. Sexual dimorphism and between-year variation in flowering, fruit set and pollinator behaviour in a boreal willow [J]. Oikos, 1988, 53(1): 58–66. doi: 10.2307/3565663.
    [21] HE L, WAGNER N D, HÖRANDL E. Restriction-site associated DNA sequencing data reveal a radiation of willow species (Salix L., Salicaceae) in the Hengduan Mountains and adjacent areas [J]. J Syst Evol, 2021, 59(1): 44–57. doi: 10.1111/jse.12593.
    [22] KARRENBERG S, KOLLMANN J, EDWARDS P J. Pollen vectors and inflorescence morphology in four species of Salix [J]. Plant Syst Evol, 2002, 235(1/2/3/4): 181–188. doi: 10.1007/s00606-002-0231-z.
    [23] SACCHI C F, PRICE P W. Pollination of the arroyo willow, Salix lasiolepis: Role of insects and wind [J]. Am J Bot, 1988, 75(9): 1387– 1393. doi: 10.1002/j.1537-2197.1988.tb14200.x.
    [24] PEETERS L, TOTLAND Ø. Wind to insect pollination ratios and floral traits in five alpine Salix species [J]. Can J Bot, 1999, 77(4): 556–563. doi: 10.1139/b99-003.
    [25] ELMQVIST T, CATES R G, HARPER J K, et al. Flowering in males and females of a Utah willow, Salix rigida and effects on growth, tannins, phenolic glycosides and sugars [J]. Oikos, 1991, 61(1): 65–72. doi: 10.2307/3545407.
    [26] BOLKER B M, BROOKS M E, CLARK C J, et al. Generalized linear mixed models: A practical guide for ecology and evolution [J]. Trends Ecol Evol, 2009, 24(3): 127–135. doi: 10.1016/j.tree.2008.10.008.
    [27] KABIR F, MORITZ K K, STENBERG J A. Plant-sex-biased tritrophic interactions on dioecious willow [J]. Ecosphere, 2014, 5(12): 1–9. doi: 10.1890/ES14-00356.1.
    [28] DOUGLAS D A. Pollination, capsule damage, and the production of seeds in Salix setchelliana (Salicaceae), an Alaskan glacial river gravel bar willow [J]. Can J Bot, 1997, 75(7): 1182–1187. doi: 10.1139/b97-831.
    [29] GRAMLICH S, HÖRANDL E. Fitness of natural willow hybrids in a pioneer mosaic hybrid zone [J]. Ecol Evol, 2016, 6(21): 7645–7655. doi: 10.1002/ece3.2470.
    [30] GONG Y B, HUANG S Q. On methodology of foraging behavior of pollinating insects [J]. Biodiv Sci, 2007, 15(6): 576–583. doi: 10.3321/j.issn:1005-0094.2007.06.002. 龚燕兵, 黄双全. 传粉昆虫行为的研究方法探讨[J]. 生物多样性, 2007, 15(6): 576–583. doi: 10.3321/j.issn:1005-0094.2007.06.002
    [31] LI Y Q, ZHANG D X. Fly pollination of Antidesma montanum (Euphorbiaceae) in Hainan, China [J]. Acta Phytotaxon Sin, 2007, 45(2): 217–226. 李永泉, 张奠湘. 山地五月茶的蝇类传粉研究[J]. 植物分类学报, 2007, 45(2): 217–226.
    [32] FÜSSEL U, DÖTTERL S, JÜRGENS A, et al. Inter-and intraspecific variation in floral scent in the genus Salix and its implication for pollination [J]. J Chem Ecol, 2007, 33(4): 749–765. doi: 10.1007/s10886-007-9257-6..
    [33] SIMON S J, KEEFOVER-RING K, PARK Y L, et al. Characterization of Salix nigra floral insect community and activity of three native Andrena bees [J]. Ecol Evol, 2021, 11(9): 4688–4700. doi: 10.1002/ece3.7369.
    [34] ALSTRÖM-RAPAPORT C, LASCOUX M, GULLBERG U. Sex determination and sex ratio in the dioecious shrub Salix viminalis L. [J]. Theor Appl Genet, 1997, 94(3/4): 493–497. doi: 10.1007/s001220050442.
    [35] CRAWFORD R M M, BALFOUR J. Female predominant sex ratios and physiological differentiation in arctic willows [J]. J Ecol, 1983, 71(1): 149–160. doi: 10.2307/2259968.
    [36] UENO N, SUYAMA Y, SEIWA K. What makes the sex ratio female-biased in the dioecious tree Salix sachalinensis? [J]. J Ecol, 2007, 95 (5): 951–959. doi: 10.1111/j.1365-2745.2007.01269.x.
    [37] YIN C Y, LI C Y. Gender differences of dioecious plants related sex ratio: Recent advances and future prospects [J]. Chin J Appl Environ Biol, 2007, 13(3): 419–425. 尹春英, 李春阳. 雌雄异株植物与性别比例有关的性别差异研究现状与展望[J]. 应用与环境生物学报, 2007, 13(3): 419–425.
    [38] PUCHOLT P, HALLINGBÄCK H R, BERLIN S. Allelic incompatibility can explain female biased sex ratios in dioecious plants [J]. BMC Genom, 2017, 18(1): 251. doi: 10.1186/s12864-017-3634-5.
    [39] HE L, JIA K H, ZHANG R G, et al. Chromosome-scale assembly of the genome of Salix dunnii reveals a male-heterogametic sex determination system on chromosome 7 [J]. Mol Ecol Resour, 2021, 21(6): 1966–1982. doi: 10.1111/1755-0998.13362.
    [40] GERLACH G, SCHILL R. Composition of orchid scents attracting euglossine bees [J]. Bot Acta, 1991, 104(5): 379–384. doi: 10.1111/j.1438-8677.1991.tb00245.x.
    [41] LUO C W, HUANG Z Y, LI K, et al. EAG responses of Apis cerana to floral compounds of a biodiesel plant, Jatropha curcas (Euphorbiaceae) [J]. J Econ Entomol, 2013, 106(4): 1653–1658. doi: 10.1603/ec12458.
    [42] ZHANG X M. Floral volatile sesquiterpenes of Elsholtzia rugulosa (Lamiaceae) selectively attract Asian honey bees [J]. J Appl Entomol, 2018, 142(3): 359–362. doi: 10.1111/jen.12481.
    [43] BHOWMIK B, SARITA S, ALOK S, et al. Role of insect pollinators in seed yield of coriander (Coriandrum sativum L.) and their electroantennogram response to crop volatiles [J]. Agric Res J, 2017, 54(2): 227–235. doi: 10.5958/2395-146X.2017.00042.4.
    [44] DÖTTERL S, FÜSSEL U, JÜRGENS A, et al. 1, 4-Dimethoxybenzene, a floral scent compound in willows that attracts an oligolectic bee [J]. J Chem Ecol, 2005, 31(12): 2993–2998. doi: 10.1007/s10886-005-9152-y.
    [45] FOWLER R E, ROTHERAY E L, GOULSON D. Floral abundance and resource quality influence pollinator choice [J]. Insect Conserv Divers, 2016, 9(6): 481–494. doi: 10.1111/icad.12197.
    [46] MAJETIC C J, RAGUSO R A, ASHMAN T L. Sources of floral scent variation: Can environment define floral scent phenotype? [J]. Plant Sign Behav, 2009, 4(2): 129–131. doi: 10.4161/PSB.4.2.7628.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

曾思文,梁恬,李林鑫,邢晓阁,陈泓朴,何理.雌雄异株植物长梗柳传粉系统和生殖策略研究[J].热带亚热带植物学报,2022,30(3):357~366

复制
分享
文章指标
  • 点击次数:177
  • 下载次数: 445
  • HTML阅读次数: 412
  • 引用次数: 0
历史
  • 收稿日期:2021-09-14
  • 在线发布日期: 2022-06-07
  • 出版日期: 2022-05-31
文章二维码