鸡公山风景区针阔混交林藤本植物在树干不同方位的依附规律
作者:
基金项目:

国家自然科学基金项目(31971454,31600379);河南省高等学校青年骨干教师培养计划项目(2020)资助


Attachment Rules of Lianas on Trunks at Different Positions in Mixed Broadleaf-conifer Forest at Jigong Mountain
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • | | | |
  • 文章评论
    摘要:

    为了揭示森林藤本植物在树干表面的分布规律,在鸡公山风景区的枫香(Liquidambar formosana)-马尾松(Pinus massoniana)针阔混交林内,采用样方法和定量调查法分析了以气生根为攀缘策略的络石(Trachelospermum divaricatum)在枫香和马尾松树干表面不同方位分布的数量差异。结果表明,络石在枫香和马尾松树干不同方位的分布状况因树高而异。在枫香树干基径(5 cm)处,西北方位附着的络石数量(6.6 ind./tree)显著高于东北方位(4.6 ind./tree)和东南方位(4.3 ind./tree);在胸径(130 cm)处,西南和东南方位附着的络石数量则显著高于西北方位;络石在基径和胸径处的死亡率均表现为南侧低,北侧高。在马尾松基径处,西北方位的络石具有最高的死亡率(35.1%),导致存活数量最少(4.6 ind./tree);胸径处则东南方位络石最多;并且南侧的络石死亡率低于北侧。因此,络石在攀缘林木不同方位的分布存在显著差异,且与树干高度和林木胸径密切相关,这是树干微环境和藤本植物自身生理特征共同作用的结果。

    Abstract:

    To reveal the distribution law of lianas on tree trunk, the difference of Trachelospermum divaricatum with aerial root climbing strategy in different directions on the surface of Liquidambar formosana and Pinus massoniana was analyzed in a coniferous and broadleaf mixed forest in Jigong Mountain. The results showed that the distribution of T. divaricatum on the trunk of L. formosana and P. massoniana varied with the height of the tree. At basal diameter (5 cm height) of L. formosana, the number of T. divaricatum (6.6 ind./tree) attached in the northwest was significantly higher than that in the northeast (4.6 ind./tree) and southeast (4.3 ind./tree). At the breast diameter (130 cm height), the number of T. divaricatum growing in the southwest and southeast was significantly higher than that in the northwest. At the height of basal and breast diameter of L. formosana, the mortality of T. divaricatum in the south is significantly lower than that in the north. At the height of basal diameter of P. massoniana, the mortality of T. divaricatum was the highest (35.1%) in the northwest, thus lead to the least number of T. divaricatum (4.6 ind./tree). At the height of breast diameter of P. massoniana, the number of T. divaricatum distributed in the southeast was greater than the other directions. In addition, T. divaricatum mortality in the south was greater than that in the north. Therefore, there are significant differences in the distribution of T. divaricatum in different directions of climbing trees, which varied with height and diameter at breast height, indicating that the distribution pattern of liana was regulated by both microenvironment of the trunk and physiological feature of liana.

    参考文献
    [1] CAI Y L, SONG Y C. Adaptive ecology of lianas in Tiantong ever-green broad-leaved forest, Zhejiang, China:Ⅰ. Leaf anatomical characters[J]. Acta Phytoecol Sin, 2001, 25(1):90-98. 蔡永立,宋永昌.浙江天童常绿阔叶林藤本植物的适应生态学:I.叶片解剖特征的比较[J].植物生态学报, 2001, 25(1):90-98.
    [2] WANG Y M, WANG Y, WANG S Y, et al. Fine root anatomical and morphological traits of three temperate liana species in northeastern China[J]. J Beijing For Univ, 2020, 42(5):42-49. doi:10.12171/j. 1000-1522.20190419. 王元敏,王燕,王思远,等.中国东北温带3种木质藤本植物细根解剖和形态性状研究[J].北京林业大学学报, 2020, 42(5):42-49. doi:10.12171/j.1000-1522.20190419.
    [3] GRAUEL W T, PUTZ F E. Effects of lianas on growth and regene-ration of Prioria copaifera in Darien, Panama[J]. For Ecol Manag, 2004, 190(1):99-108. doi:10.1016/j.foreco.2003.10.009.
    [4] JU Y X, SHANG Q, WANG Z W, et al. Host selection and distribution patterns of liana plants in a deciduous broadleaf forest in Jigong Mountain[J]. J Ecol Rural Environ, 2019, 35(2):205-209. doi:10. 19741/j.issn.1673-4831.2018.0196. 琚煜熙,尚晴,王忠伟,等.鸡公山落叶阔叶林藤本植物寄主选择与分布规律[J].生态与农村环境学报, 2019, 35(2):205-209. doi:10.19741/j.issn.1673-4831.2018.0196.
    [5] VIVEK P, PARTHASARATHY N. Liana community and functional trait analysis in tropical dry evergreen forest of India[J]. J Plant Ecol, 2015, 8(5):501-512. doi:10.1093/jpe/rtu031.
    [6] WRIGHT S J, SUN I F, PICKERING M, et al. Long-term changes in liana loads and tree dynamics in a Malaysian forest[J]. Ecology, 2015, 96(10):2748-2757. doi:10.1890/14-1985.1.
    [7] WANG Z W, ZHANG K M, WU N, et al. Effect of liana on the under-story species richness in deciduous broadleaf forest of Jigong Mountain in Henan[J]. J Yunnan Agric Univ (Nat Sci), 2020, 35(3):476-482. doi:10.12101/j.issn.1004-390X (n).201910028. 王忠伟,张科萌,邬娜,等.河南鸡公山落叶阔叶林藤本植物对林下物种多样性的影响[J].云南农业大学学报(自然科学), 2020, 35(3):476-482. doi:10.12101/j.issn.1004-390X (n).201910028.
    [8] SCHNITZER S A, BONGERS F. The ecology of lianas and their role in forests[J]. Trend Ecol Evol, 2002, 17(5):223-230. doi:10.1016/S0169-5347(02)02491-6.
    [9] DEWALT S J, ICKES K, NILUS R, et al. Liana habitat associations and community structure in a Bornean lowland tropical forest[J]. Plant Ecol, 2006, 186(2):203-216. doi:10.1007/s11258-006-9123-6.
    [10] ICHIHASHI R, TATENO M. Biomass allocation and long-term growth patterns of temperate lianas in comparison with trees[J]. New Phytol, 2015, 207(3):604-612. doi:10.1111/nph.13391.
    [11] ROEDER M, MCLEISH M, BECKSCHÄFER P, et al. Phylogenetic clustering increases with succession for lianas in a Chinese tropical montane rain forest[J]. Ecography, 2015, 38(8):832-841. doi:10. 1111/ecog.01051.
    [12] CAMPANELLO P I, GATTI M G, ARES A, et al. Tree regeneration and microclimate in a liana and bamboo-dominated semideciduous Atlantic Forest[J]. For Ecol Manag, 2007, 252(1/2/3):108-117. doi:10.1016/j.foreco.2007.06.032.
    [13] ROEDER M, SLIK J W F, HARRISON R D, et al. Proximity to the host is an important characteristic for selection of the first support in lianas[J]. J Veg Sci, 2015, 26(6):1054-1060. doi:10.1111/jvs.12316.
    [14] LIU G C, HUANG Y X, WANG Q G, et al. Effects of environmental factors on plant species diversity:Research progress[J]. Chin Agri Sci Bull, 2018, 34(13):83-89. doi:10.11924/j.issn.1000-6850.casb17030202. 刘冠成,黄雅曦,王庆贵,等.环境因子对植物物种多样性的影响研究进展[J].中国农学通报, 2018, 34(13):83-89. doi:10.11924/j. issn.1000-6850.casb17030202.
    [15] YAN D F, HE W, YANG X T. Spatial distribution of plant diversity in shrub layer of Quercus variabilis plantation and its relationship with light environment[J]. Chin J Appli Ecol, 2020, 31(11):3605-3613. doi:10.13287/j.1001-9332.202011.002. 闫东锋,贺文,杨喜田.栓皮栎人工林灌木层植物多样性的空间分布及其与光环境的关系[J].应用生态学报, 2020, 31(11):3605-3613. doi:10.13287/j.1001-9332.202011.002.
    [16] IBARRA-MANRÍQUEZ G, RENDÓN-SANDOVAL F J, CORNEJO-TENORIO G, et al. Lianas of Mexico[J]. Bot Sci, 2015, 93(3):365-417. doi:10.17129/botsci.123.
    [17] CHEN Y J, CHEN J W, CAI Z Q. Lianas and their functions in tropical forests[J]. Chin Bull Bot, 2007, 24(2):240-249. doi:10.3969/j.issn. 1674-3466.2007.02.017. 陈亚军,陈军文,蔡志全.木质藤本及其在热带森林中的生态学功能[J].植物学通报, 2007, 24(2):240-249. doi:10.3969/j.issn.1674-3466.2007.02.017.
    [18] CHEN Y J, ZHANG J L, CAO K F. Morphological, growth and photo-synthetic traits of two liana species in response to different light and soil nutrients[J]. Chin Bull Bot, 2008, 25(2):185-194. doi:10.3969/j. issn.1674-3466.2008.02.007. 陈亚军,张教林,曹坤芳.两种热带木质藤本幼苗形态、生长和光合能力对光强和养分的响应[J].植物学通报, 2008, 25(2):185-194. doi:10.3969/j.issn.1674-3466.2008.02.007.
    [19] WANG X F, FENG J Y, WENG S F, et al. Leaf traits and environ-mental adaptability of 4 lianas in tropical garden[J]. J SW For Univ, 2019, 39(3):166-171. doi:10.11929/j.swfu.201807049. 王晓帆,冯嘉仪,翁殊斐,等.热带园林4种木质藤本植物叶性状与环境适应能力研究[J].西南林业大学学报, 2019, 39(3):166-171. doi:10.11929/j.swfu.201807049.
    [20] PENG J B, LIU G, SUN S Q, et al. Contribution of tropical and subtropical circulation anomalies to the intensity of East Asian winter monsoon over lower-latitude region[J]. Chin J Atmos Sci, 2020, 44(5):960-974. doi:10.3878/j.issn.1006-9895.1911.19141. 彭京备,刘舸,孙淑清,等.热带和副热带环流对东亚低纬度冬季风强度影响[J].大气科学, 2020, 44(5):960-974. doi:10.3878/j.issn. 1006-9895.1911.19141.
    [21] LIU Y C, SHANG Q, ZHANG B, et al. Effects of understory liana (Trachelospermum jasminoides) on distributions of litterfall and soil organic carbon in an oak forest in central China[J]. Sustainability, 2017, 9(6):1019. doi:10.3390/su9061019.
    [22] LI L, CHEN Y J, REN H, et al. Ecological and biological characteri-stics of Bauhinia corymbosa[J]. J Trop Subtrop Bot, 2009, 17(6):528-534. doi:10.3969/j.issn.1005-3395.2009.06.002. 李玲,陈永聚,任海,等.首冠藤的生态生物学特征[J].热带亚热带植物学报, 2009, 17(6):528-534. doi:10.3969/j.issn.1005-3395. 2009.06.002.
    [23] YUAN C M, LIU W Y, LI X S, et al. Aboveground biomass of lianas and its response to anthropogenic disturbances in moist evergreen broad-leaved forests in the Ailao Mountains of southwestern China[J]. Chin J Plant Ecol, 2009, 33(5):852-859. doi:10.3773/j.issn.1005-264x.2009.05.003. 袁春明,刘文耀,李小双,等.哀牢山湿性常绿阔叶林木质藤本植物地上部分生物量及其对人为干扰的响应[J].植物生态学报, 2009, 33(5):852-859. doi:10.3773/j.issn.1005-264x.2009.05.003.
    [24] SONG H Q, NI M Y, ZHU S D. Hydraulic and photosynthetic charac-teristics differ between co-generic tree and liana species:A case study of Millettia and Gnetum in tropical forest[J]. Chin J Plant Ecol, 2020, 44(3):192-204. doi:10.17521/cjpe.2019.0304. 宋慧清,倪鸣源,朱师丹.乔木与木质藤本的水力与光合性状的差异:以热带森林崖豆藤属和买麻藤属为例[J].植物生态学报, 2020, 44(3):192-204. doi:10.17521/cjpe.2019.0304.
    [25] XIAO Z Q, MA C C, DAI J, et al. Analysis on diversity of vines in Tongbiguan Nature Reserve[J]. J Trop Subtrop Bot, 2016, 24(4):437-443. doi:10.11926/j.issn.1005-3395.2016.04.011. 肖之强,马晨晨,代俊,等.铜壁关自然保护区藤本植物多样性研究[J].热带亚热带植物学报, 2016, 24(4):437-443. doi:10.11926/j. issn.1005-3395.2016.04.011.
    相似文献
    引证文献
引用本文

王忠伟,尚晴,刘彦春.鸡公山风景区针阔混交林藤本植物在树干不同方位的依附规律[J].热带亚热带植物学报,2022,30(4):492~499

复制
分享
文章指标
  • 点击次数:169
  • 下载次数: 496
  • HTML阅读次数: 662
  • 引用次数: 0
历史
  • 收稿日期:2021-07-24
  • 最后修改日期:2021-09-17
  • 在线发布日期: 2022-07-27
  • 出版日期: 2022-07-31
文章二维码