不同白化期的‘黄山白茶’代谢物差异分析
作者:
基金项目:

黄山市科技计划项目(2018KN-03);安徽省农业科学院创新团队项目(2021YL036)资助


Metabolites Profiling of Green Tea Processed from ‘Huangshanbaicha No. 1’ Cultivar at Different Albino Stages
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    ‘黄山白茶1号’是温度敏感型白化茶树品种,由其鲜叶加工的绿茶,即‘黄山白茶’,具有清香持久、滋味鲜爽等特征。为探究不同白化时期加工绿茶的香气和滋味差异,分析了绿茶中挥发性代谢物、儿茶素、咖啡碱和游离氨基酸含量的变化。结果表明,3个白化时期的‘黄山白茶’在香气和滋味上存在差异。气相质谱(GC-MS)分析表明,共有29个高丰度挥发性化合物被鉴定;主成分分析(PCA)显示芳樟醇、顺-己酸-3-己烯酯、香叶醇、顺-3-己烯醇、(Z)-丁酸-3-己烯酯可能是导致3类绿茶香气存在差异的标志性化合物。滋味成分分析表明儿茶素类物质在白化早期绿茶中含量最低;在白化中期绿茶中略有增加但不显著,而在白化后期绿茶中则显著增加;咖啡碱在3类绿茶中无显著差异;游离氨基酸在白化早期绿茶中含量最高,为干质量的4.4%,而在白化后期绿茶中只占干质量的1.3%。因此,不同时期的‘黄山白茶1号’嫩梢中的代谢物积累存在差异,使得加工的绿茶风味不同。

    Abstract:

    Tea cultivar ‘Huangshanbaicha No. 1’ (HSBC#1) was bred from natural albino mutants of tea plants. The green tea processed from HSBC#1 possess umami, mellow taste and fresh odor. For investigating the metabolite profile of green tea produced from three albino stages (early, middle, and late) of HSBC#1, the main components in tea, such as volatile compounds, catechins, caffeine, and free amino acids, were analyzed. The green teas produced from different stages of HSBC#1 showed the different odor and taste via sensory evaluation. A total of twenty-nine volatiles was identified and quantified. The principal component analysis indicated that the top five differential volatiles were geraniol, (Z)-hexanoic acid, 3-hexenyl ester, linalool, (Z)-3-hexen-1-ol, and (Z)-butanoic acid, 3-hexenyl ester, approximately contributing to the differences in aroma among green teas. Catechins were lower concentrated in early-stage green tea, but their concentrations increased significantly in late-stage green tea. The amount of caffeine had no difference in three types of green tea. The total content of free amino acids in early-stage green tea accounted for about 4% of dry weight, while that in late-stage green tea only for 1.3% of dry weight. Therefore, the differences in metabolites among tender shoots of HSBC#1 at different albino stages lead to the difference in the flavor of green tea products.

    参考文献
    [1] LIU D D, MEI J F, WANG J Y, et al. Research progress on albino trait of tea plant[J]. China Tea, 2020, 42(4):24-35. doi:10.3969/j.issn. 1000-3150.2020.04.006. 刘丁丁, 梅菊芬, 王君雅, 等. 茶树白化突变研究进展[J]. 中国茶叶, 2020, 42(4):24-35. doi:10.3969/j.issn.1000-3150.2020.04.006.
    [2] LOU Y H, HE W Z, LIU Y, et al. Comprehensive assessment of quality traits of 14 etiolated and albino tea cultivars[J]. J Tea, 2020, 46(2):84-90. doi:10.3969/j.issn.0577-8921.2020.02.004. 娄艳华, 何卫中, 刘瑜, 等. 14个黄化、白化变异茶树品种(系)综合性状评价与分析[J]. 茶叶, 2020, 46(2):84-90. doi:10.3969/j.issn. 0577-8921.2020.02.004.
    [3] WAN Q, HU Y F, LU W Y, et al. Analysis on quality components of albino tea from different areas in Jiangsu[J]. J S Agric, 2017, 48(12):2253-2258. doi:10.3969/j.issn.2095-1191.2017.12.22. 万青, 胡雲飞, 陆文渊, 等. 江苏地区白化茶品质成分比较分析[J]. 南方农业学报, 2017, 48(12):2253-2258. doi:10.3969/j.issn.2095-1191.2017.12.22.
    [4] MA L L, LIU Y L, CAO D, et al. Analysis and evaluation model for the taste quality of green tea made from various cultivars or strains[J]. Trans CSAE, 2020, 36(10):277-286. doi:10.11975/j.issn.1002-6819. 2020.10.034. 马林龙, 刘艳丽, 曹丹, 等. 不同茶树品种(系)的绿茶滋味分析及评价模型构建[J]. 农业工程学报, 2020, 36(10):277-286. doi:10. 11975/j.issn.1002-6819.2020.10.034.
    [5] FENG L, GAO M J, HOU R Y, et al. Determination of quality consti-tuents in the young leaves of albino tea cultivars[J]. Food Chem, 2014, 155:98-104. doi:10.1016/j.foodchem.2014.01.044.
    [6] XIONG L G, LI J, LI Y H, et al. Dynamic changes in catechin levels and catechin biosynthesis-related gene expression in albino tea plants (Camellia sinensis L.)[J]. Plant Physiol Biochem, 2013, 71:132-143. doi:10.1016/j.plaphy.2013.06.019.
    [7] CHEN Y Y, FU X M, MEI X, et al. Proteolysis of chloroplast proteins is responsible for accumulation of free amino acids in dark-treated tea (Camellia sinensis) leaves[J]. J Proteomics, 2017, 157:10-17. doi:10. 1016/j.jprot.2017.01.017.
    [8] LIU G F, HAN Z X, FENG L, et al. Metabolic flux redirection and transcriptomic reprogramming in the albino tea cultivar ‘Yu-Jin-Xiang’ with an emphasis on catechin production[J]. Sci Rep, 2017, 7:45062. doi:10.1038/srep45062.
    [9] CHEN F, THOLL D, BOHLMANN J, et al. The family of terpene synthases in plants:A mid-size family of genes for specialized meta-bolism that is highly diversified throughout the kingdom[J]. Plant J, 2011, 66(1):212-229. doi:10.1111/j.1365-313X.2011.04520.x.
    [10] GUTENSOHN M, ORLOVA I, NGUYEN T T H, et al. Cytosolic monoterpene biosynthesis is supported by plastid-generated geranyl diphosphate substrate in transgenic tomato fruits[J]. Plant J, 2013, 75(3):351-363. doi:10.1111/tpj.12212.
    [11] YANG Z Y, KOBAYASHI E, KATSUNO T, et al. Characterisation of volatile and non-volatile metabolites in etiolated leaves of tea (Camellia sinensis) plants in the dark[J]. Food Chem, 2012, 135(4):2268-2276. doi:10.1016/j.foodchem.2012.07.066.
    [12] LIAO X N, YAN J N, WANG B, et al. Identification of key odorants responsible for cooked corn-like aroma of green teas made by tea cultivar ‘Zhonghuang 1’[J]. Food Res Int, 2020, 136:109355. doi:10. 1016/j.foodres.2020.109355.
    [13] SHEN Q, ZHANG X Q, LIU X X, et al. Aroma components analysis of Zheng'an white tea in different stages of whitening process[J]. Food Sci Technol, 2021, 46(3):276-282. doi:10.13684/j.cnki.spkj.2021.03.044. 沈强, 张小琴, 刘晓霞, 等. 不同阶段性返白过程正安白茶香气成分分析[J]. 食品科技, 2021, 46(3):276-282. doi:10.13684/j.cnki. spkj.2021.03.044.
    [14] SHEN Z G, JIANG W H, FANG S H. Current situation and counte-rmeasure of development of Huangshan white tea industry in Shexian County, Anhui Province[J]. Chin Agric Sci Bull, 2013, 29(26):36-40. doi:10.3969/j.issn.1000-6850.2013.26.008. 沈周高, 江稳华, 方世辉. 安徽歙县黄山白茶产业发展现状及对策思考[J]. 中国农学通报, 2013, 29(26):36-40. doi:10.3969/j.issn. 1000-6850.2013.26.008.
    [15] WANG C, ZHANG C X, KONG Y W, et al. A comparative study of volatile components in Dianhong teas from fresh leaves of four tea cultivars by using chromatography-mass spectrometry, multivariate data analysis, and descriptive sensory analysis[J]. Food Res Int, 2017, 100:267-275. doi:10.1016/j.foodres.2017.07.013.
    [16] HAN Z X, RANA M M, LIU G F, et al. Green tea flavour determinants and their changes over manufacturing processes[J]. Food Chem, 2016, 212:739-748. doi:10.1016/j.foodchem.2016.06.049.
    [17] WANG M Q, MA W J, SHI J, et al. Characterization of the key aroma compounds in Longjing tea using stir bar sorptive extraction (SBSE) combined with gas chromatography-mass spectrometry (GC-MS), gas chromatography-olfactometry (GC-O), odor activity value (OAV), and aroma recombination[J]. Food Res Int, 2020, 130:108908. doi:10. 1016/j.foodres.2019.108908.
    [18] YANG Y Z, LI T, TENG R M, et al. Low temperature effects on carotenoids biosynthesis in the leaves of green and albino tea plant (Camellia sinensis (L.) O. Kuntze)[J]. Sci Hort, 2021, 285:110164. doi:10.1016/j.scienta.2021.110164.
    [19] FENG Z H, LI Y F, LI M, et al. Tea aroma formation from six model manufacturing processes[J]. Food Chem, 2019, 285:347-354. doi:10.1016/j.foodchem.2019.01.174.
    [20] MILLAR A A, SMITH M A, KUNST L. All fatty acids are not equal:Discrimination in plant membrane lipids[J]. Trends Plant Sci, 2000, 5(3):95-101. doi:10.1016/S1360-1385(00)01566-1.
    [21] WAN X C. Biochemistry of Tea[M]. Beijing:China Agricultural Press, 2003:8-9. 宛晓春. 茶叶生物化学[M]. 北京:中国农业出版社, 2003:8-9.
    [22] SHEN Q, ZHANG X Q, XU F F, et al. Changes of odorous substance and taste attributes of the Zheng'an Bai Cha in different times[J]. Sci Technol Food Ind, 2020, 41(24):31-35. doi:10.13386/j.issn1002-0306.2020030278. 沈强, 张小琴, 许凡凡, 等. 不同时期正安白茶呈味物质变化及滋味评价[J]. 食品工业科技, 2020, 41(24):31-35. doi:10.13386/j.issn 1002-0306.2020030278.
    [23] LI J, YAO Y F, WANG J Q, et al. Rutin, γ-aminobutyric acid, gallic acid, and caffeine negatively affect the sweet-mellow taste of Congou black tea infusions[J]. Molecules, 2019, 24(23):4221. doi:10.3390/molecules24234221.
    [24] ZHANG L, CAO Q Q, GRANATO D, et al. Association between chemistry and taste of tea:A review[J]. Trends Food Sci Technol, 2020, 101:139-149. doi:10.1016/j.tifs.2020.05.015.
    [25] ZHU J Y, XU Q S, ZHAO S Q, et al. Comprehensive co-expression analysis provides novel insights into temporal variation of flavonoids in fresh leaves of the tea plant (Camellia sinensis)[J]. Plant Sci, 2020, 290:110306. doi:10.1016/j.plantsci.2019.110306.
    [26] YU S W, LI P H, ZHAO X C, et al. CsTCPs regulate shoot tip development and catechin biosynthesis in tea plant (Camellia sinensis)[J]. Hort Res, 2021, 8(1):104. doi:10.1038/s41438-021-00538-7.
    [27] ZHANG Q F, SHI Y Z, MA L F, et al. Metabolomic analysis using ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-TOF MS) uncovers the effects of light intensity and temperature under shading treatments on the metabolites in tea[J]. PLoS One, 2014, 9(11):e112572. doi:10.1371/journal.pone. 0112572.
    [28] LI N N, YANG Y P, YE J H, et al. Effects of sunlight on gene expression and chemical composition of light-sensitive albino tea plant[J]. Plant Growth Regul, 2016, 78(2):253-262. doi:10.1007/s10725-015-0090-6.
    [29] DENG W W, FEI Y, WANG S, et al. Effect of shade treatment on theanine biosynthesis in Camellia sinensis seedlings[J]. Plant Growth Regul, 2013, 71(3):295-299. doi:10.1007/s10725-013-9828-1.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周汉琛,刘亚芹,雷攀登.不同白化期的‘黄山白茶’代谢物差异分析[J].热带亚热带植物学报,2022,30(2):187~194

复制
分享
文章指标
  • 点击次数:274
  • 下载次数: 591
  • HTML阅读次数: 717
  • 引用次数: 0
历史
  • 收稿日期:2021-06-08
  • 最后修改日期:2021-08-25
  • 在线发布日期: 2022-03-30
文章二维码