毛竹C4H基因的鉴定及其表达模式分析
作者:
基金项目:

国家重点研发计划项目(2021YFD2200502);国家自然科学基金项目(31971736)资助


Identification and Expression Pattern Analysis of C4H Genes in Phyllostachys edulis
Author:
  • LI Guangzhu

    LI Guangzhu

    Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHU Chenglei

    ZHU Chenglei

    Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YANG Kebin

    YANG Kebin

    Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Xinyue

    WANG Xinyue

    Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • GAO Zhimin

    GAO Zhimin

    Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [37]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为了解毛竹(Phyllostachys edulis)中肉桂酸-4-羟化酶基因(C4H)的分子特征及其表达模式,采用生物信息学方法在毛竹基因组数据库中鉴定出6个C4H成员(PeC4H1~PeC4H6),基因编码区长度为1 506~1 695 bp,推测编码501~564 aa,均具有保守的血红素结合域、苏氨酸结合槽基序和5个特征性底物识别位点,属于细胞色素P450超家族。系统进化分析表明,6个PeC4Hs可分为2类,分别含有2和4个成员。转录组数据分析表明,PeC4Hs在毛竹26个组织中的表达量存在明显差异,不同高度笋中PeC4Hs的表达差异显著。PeC4Hs启动子序列中含有多种响应逆境胁迫和激素信号的顺式调控元件,PeC4Hs表达受干旱和GA3的影响,干旱时,仅PeC4H3/4在根中显著上调表达,其余成员均呈下调表达;GA3处理下叶中PeC4H3/6迅速响应,呈先显著上调后逐渐降低的趋势,根中PeC4H2/5在处理前1 h短暂下调后又显著上调,至8 h时恢复到处理前的表达水平。因此,PeC4Hs可能在毛竹笋的木质化过程和应对非生物胁迫中发挥着重要作用。

    Abstract:

    To reveal the molecular characteristics and expression pattern of C4H genes in moso bamboo (Phyllostachys edulis), six C4H gene members (PeC4H1-PeC4H6) from moso bamboo genomic database were identified by bioinformatics method. The length of gene coding region ranged from 1 506 to 1 695 bp, encoding 501-564 aa, and all of them have conserved heme binding domain, threonine binding channel motif and five characteristic substrate recognition sites, which belong to the cytochrome P450 superfamily. Phylogenetic analysis showed that the six PeC4Hs could be divided into two classes, containing 2 and 4 members, respectively. Transcriptome analysis showed that there were significant differences in the expression of PeC4Hs in 26 tissues of moso bamboo, and the expression of PeC4Hs in bamboo shoots at different heights were different by qPCR. There were a variety of cis-regulatory elements in response to stress and hormone signals in the promoter sequences of PeC4Hs. The expression of PeC4Hs was affected by drought and GA3. Under drought, only PeC4H3/4 expression was significantly up-regulated in roots, while others were down-regulated. Treated by GA3, the expression of PeC4H3/6 in leaves was responded rapidly and significantly up-regulated at first and then gradually decreased. The expression of PeC4H2/5 in roots was briefly down-regulated in the first hour and then significantly increased, finally recovered to the untreated level at 8 h. Therefore, PeC4Hs might play an important role in the lignification process of bamboo shoot and the response to abiotic stress.

    参考文献
    [1] KUMAR S, OMER S, PATEL K, et al. Cinnamate 4-hydroxylase (C4H) genes from Leucaena leucocephala:A pulp yielding leguminous tree[J]. Mol Biol Rep, 2013, 40(2):1265-1274. doi:10.1007/s11033-012-2169-8.
    [2] WINKEL-SHIRLEY B. Biosynthesis of flavonoids and effects of stress[J]. Curr Opin Plant Biol, 2002, 5(3):218-223. doi:10.1016/S1369-5266(02)00256-X.
    [3] KOOPMANN E, LOGEMANN E, HAHLBROCK K. Regulation and functional expression of cinnamate 4-hydroxylase from parsley[J]. Plant Physiol, 1999, 119(1):49-56. doi:10.1104/pp.119.1.49.
    [4] RAES J, ROHDE A, CHRISTENSEN J H, et al. Genome-wide charac-terization of the lignification toolbox in Arabidopsis[J]. Plant Physiol, 2003, 133(3):1051-1071. doi:10.1104/PP.103.026484.
    [5] XU H, PARK N I, LI X H, et al. Molecular cloning and character-rization of phenylalanine ammonia-lyase, cinnamate 4-hydroxylase and genes involved in flavone biosynthesis in Scutellaria baicalensis[J]. Bioresour Technol, 2010, 101(24):9715-9722. doi:10.1016/j.biortech. 2010.07.083.
    [6] CHEN A H, CHAI Y R, LI J N, et al. Molecular cloning of two genes encoding cinnamate 4-hydroxylase (C4H) from oilseed rape (Brassica napus)[J]. J Biochem Mol Biol, 2007, 40(2):247-260. doi:10.5483/BMBREP.2007.40.2.247.
    [7] CAROCHA V, SOLER M, HEFER C, et al. Genome-wide analysis of the lignin toolbox of Eucalyptus grandis[J]. New Phytol, 2015, 206(4):1297-1313. doi:10.1111/nph.13313.
    [8] MILLAR D J, LONG M, DONOVAN G, et al. Introduction of sense constructs of cinnamate 4-hydroxylase (CYP73A24) in transgenic tomato plants shows opposite effects on flux into stem lignin and fruit flavonoids[J]. Phytochemistry, 2007, 68(11):1497-1509. doi:10.1016/j. phytochem.2007.03.018.
    [9] BELL-LELONG D A, CUSUMANO J C, MEYER K, et al. Cinnamate-4-hydroxylase expression in Arabidopsis:Regulation in response to development and the environment[J]. Plant Physiol, 1997, 113(3):729-738. doi:10.1104/pp.113.3.729.
    [10] SEWALT V, NI W, BLOUNT J W, et al. Reduced lignin content and altered lignin composition in transgenic tobacco down-regulated in expression of l-phenylalanine ammonia-lyase or cinnamate 4-hydro-xylase[J]. Plant Physiol, 1997, 115(1):41-50. doi:10.1104/PP.115.1.41.
    [11] BLOUNT J W, KORTH K L, MASOUD S A, et al. Altering expression of cinnamic acid 4-hydroxylase in transgenic plants provides evidence for a feedback loop at the entry point into the phenylpropanoid pathway[J]. Plant Physiol, 2000, 122(1):107-116. doi:10.1104/PP.122.1.107.
    [12] PHIMCHAN P, CHANTHAI S, BOSLAND P W, et al. Enzymatic changes in phenylalanine ammonia-lyase, cinnamic-4-hydroxylase, capsaicin synthase, and peroxidase activities in Capsicum under drought stress[J]. J Agric Food Chem, 2014, 62(29):7057-7062. doi:10.1021/jf4051717.
    [13] ZHU C L, YANG K B, XU X R, et al. Molecular characteristics of NIP genes in Phyllostachys edulis and their expression patterns in response to stresses[J]. Sci Silv Sin, 2021, 57(1):64-76. doi:10.11707/j.1001-7488.20210107. 朱成磊, 杨克彬, 徐秀荣, 等. 毛竹NIP基因的分子特征及应答胁迫的表达模式[J]. 林业科学, 2021, 57(1):64-76. doi:10.11707/j. 1001-7488.20210107.
    [14] LI Y M, FENG P F. Bamboo resources in China based on the Ninth National Forest Inventory data[J]. World Bamboo Rattan, 2019, 17(6):45-48. doi:10.12168/sjzttx.2019.06.010. 李玉敏, 冯鹏飞. 基于第九次全国森林资源清查的中国竹资源分析[J]. 世界竹藤通讯, 2019, 17(6):45-48. doi:10.12168/sjzttx.2019.06.010.
    [15] GAO Z M, PENG Z H, LI X P, et al. Isolation and tissue specific expression analysis of phenylanlanine ammonialyase gene from Phyllo- stachys edulis[J]. For Res, 2009, 22(3):449-453. doi:10.3321/j.issn:1001-1498.2009.03.025. 高志民, 彭镇华, 李雪平, 等. 毛竹苯丙氨酸解氨酶基因的克隆及组织特异性表达分析[J]. 林业科学研究, 2009, 22(3):449-453. doi:10.3321/j.issn:1001-1498.2009.03.025.
    [16] XU H, YANG K B, ZHU C L, et al. Preliminary study on the function of cinnamoyl-CoA reductase gene PeCCR of moso bamboo (Phyllo-stachys edulis)[J]. For Res, 2020, 33(2):77-84. doi:10.13275/j.cnki. lykxyj.2020.02.010. 徐浩, 杨克彬, 朱成磊, 等. 毛竹肉桂酰辅酶A还原酶基因PeCCR功能初步研究[J]. 林业科学研究, 2020, 33(2):77-84. doi:10. 13275/j.cnki.lykxyj.2020.02.010.
    [17] YANG K B, SHAN X M, SHI J J, et al. Identification and expression analysis of 4CL gene family in Phyllostachys edulis[J]. J Nucl Agric Sci, 2021, 35(1):72-82. doi:10.11869/j.issn.100-8551.2021.01.0072. 杨克彬, 单雪萌, 史晶晶, 等. 毛竹4-香豆酸辅酶A连接酶基因家族鉴定及表达分析[J]. 核农学报, 2021, 35(1):72-82. doi:10.11869/j. issn.100-8551.2021.01.0072.
    [18] LI L C, YANG K B, WANG S N, et al. Genome-wide analysis of laccase genes in moso bamboo highlights PeLAC10 involved in lignin biosynthesis and in response to abiotic stresses[J]. Plant Cell Rep, 2020, 39(6):751-763. doi:10.1007/s00299-020-02528-w.
    [19] JIN S Y, LU M Z, GAO J. Cloning and expression analysis of the C4H gene involved in the lignin biosynthesis in Phyllostachys edulis[J]. For Res, 2010, 23(3):319-325. 金顺玉, 卢孟柱, 高健. 毛竹木质素合成相关基因C4H的克隆及组织表达分析[J]. 林业科学研究, 2010, 23(3):319-325.
    [20] CHEN C J, CHEN H, ZHANG Y, et al. TBtools:An integrative toolkit developed for interactive analyses of big biological data[J]. Mol Plant, 2020, 13(8):1194-1202. doi:10.1016/j.molp.2020.06.009.
    [21] ZHAO H S, GAO Z M, WANG L, et al. Chromosome-level reference genome and alternative splicing atlas of moso bamboo (Phyllostachys edulis)[J]. Gigascience, 2018, 7(10):giy115. doi:10.1093/GIGASCI ENCE/GIY115.
    [22] LESCOT M, DEHAIS P, THIJS G, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucl Acids Res, 2002, 30(1):325-327. doi:10.1093/nar/30.1.325.
    [23] KUMAR S, STECHER G, TAMURA K. MEGA7:Molecular evolu-tionary genetics analysis version 7.0 for bigger datasets[J]. Mol Biol Evol, 2016, 33(7):1870-1874. doi:10.1093/molbev/msw054.
    [24] FAN C J, MA J M, GUO Q R, et al. Selection of reference genes for quantitative real-time PCR in bamboo (Phyllostachys edulis)[J]. PLoS One, 2013, 8(2):e56573. doi:10.1371/journal.pone.0056573.
    [25] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method[J]. Methods, 2001, 25(4):402-408. doi:10.1006/meth.2001.1262.
    [26] CHAPPLE C. Molecular-genetic analysis of plant cytochrome P450-dependent monooxygenases[J]. Annu Rev Plant Physiol Plant Mol Biol, 1998, 49(1):311-343. doi:10.1146/annurev.arplant.49.1.311.
    [27] SCHOCH G A, ATTIAS R, LE RET M, et al. Key substrate recog-nition residues in the active site of a plant cytochrome P450, CYP73A1. Homology model guided site-directed mutagenesis[J]. Eur J Biochem, 2003, 270(18):3684-3695. doi:10.1046/j.1432-1033.2003.03739.x.
    [28] RENAULT H, DE MAROTHY M, JONASSON G, et al. Gene duplication leads to altered membrane topology of a cytochrome P450 enzyme in seed plants[J]. Mol Biol Evol, 2017, 34(8):2041-2056. doi:10.1093/molbev/msx160.
    [29] PENG Z H, LU Y, LI L B, et al. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla)[J]. Nat Genet, 2013, 45(4):456-461. doi:10.1038/ng.2569.
    [30] FAHRENDORF T, DIXON R A. Stress responses in alfalfa (Medicago sativa L.):XVIII. Molecular cloning and expression of the elicitor-inducible cinnamic acid 4-hydroxylase cytochrome P450[J]. Arch Biochem Biophys, 1993, 305(2):509-515. doi:10.1006/abbi.1993.1454.
    [31] XIA J X, LIU Y J, YAO S B, et al. Characterization and expression profiling of Camellia sinensis cinnamate 4-hydroxylase genes in phenyl-propanoid pathways[J]. Genes (Basel), 2017, 8(8):193. doi:10.3390/genes8080193.
    [32] MIZUTANI M, OHTA D, SATO R. Isolation of a cDNA and a genomic clone encoding cinnamate 4-hydroxylase from Arabidopsis and its expression manner in planta[J]. Plant Physiol, 1997, 113(3):755-763. doi:10.1104/pp.113.3.755.
    [33] CHEN F, DIXON R A. Lignin modification improves fermentable sugar yields for biofuel production[J]. Nat Biotechnol, 2007, 25(7):759-761. doi:10.1038/nbt1316.
    [34] SCHILMILLER A L, STOUT J, WENG J K, et al. Mutations in the cinnamate 4-hydroxylase gene impact metabolism, growth and develop-ment in Arabidopsis[J]. Plant J, 2009, 60(5):771-782. doi:10.1111/j. 1365-313X.2009.03996.x.
    [35] SONG X L, KONG B, GAO Z M, et al. Identification and expression analysis of the APX gene family in Phyllostachys edulis[J]. J Trop Subtrop Bot, 2020, 28(3):255-264. doi:10.11926/jtsb.4155. 宋笑龙, 孔波, 高志民, 等. 毛竹APX家族基因鉴定和表达分析[J]. 热带亚热带植物学报, 2020, 28(3):255-264. doi:10.11926/jtsb.4155.
    [36] HUANG Z, JIN S H, GUO H D, et al. Genome-wide identification and characterization of TIFY family genes in moso bamboo (Phyllostachys edulis) and expression profiling analysis under dehydration and cold stresses[J]. PeerJ, 2016, 4:e2620. doi:10.7717/peerj.2620.
    [37] ZHANG H X, WANG H H, ZHU Q, et al. Transcriptome character-rization of moso bamboo (Phyllostachys edulis) seedlings in response to exogenous gibberellin applications[J]. BMC Plant Biol, 2018, 18(1):125. doi:10.1186/s12870-018-1336-z.
    相似文献
    引证文献
引用本文

李广柱,朱成磊,杨克彬,王新悦,高志民.毛竹C4H基因的鉴定及其表达模式分析[J].热带亚热带植物学报,2022,30(2):151~160

复制
分享
文章指标
  • 点击次数:391
  • 下载次数: 576
  • HTML阅读次数: 1491
  • 引用次数: 0
历史
  • 收稿日期:2021-06-02
  • 最后修改日期:2021-07-28
  • 在线发布日期: 2022-03-30
文章二维码