镉在南美蟛蜞菊、蟛蜞菊及其杂交种中的迁移和分布特征
作者:
基金项目:

国家自然科学基金项目(32171493,31870374)资助


Migration and Distribution Characteristics of Cadmium in Sphagneticola trilobata, S. calendulacea and Their Hybrid
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [44]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了解植物对镉的吸收和迁移特性,用200 μmol/L镉处理蟛蜞菊(Sphagneticola calendulacea)、南美蟛蜞菊(S.trilobata)及其杂交种,研究了其对镉的吸收、迁移与分布的差异。结果表明,随着镉处理时间的延长,3种植物茎和叶中的镉含量逐渐上升,叶片的镉含量逐渐与茎相当,而根部的镉含量一直是最高的;整株水平上,杂交种的镉含量一直是最高的。恢复生长后,3种植物根中镉含量均呈下降趋势,杂交种(50.4%)>蟛蜞菊(35.8%)>南美蟛蜞菊(33.7%)。镉在3种植物的叶位分布模式在去镉前后没有明显的变化,杂交种更偏向将重金属镉积累于幼叶和成熟叶中。3种植物从叶脉、叶脉间隙到叶片边缘的镉含量逐渐下降,南美蟛蜞菊叶脉的镉含量(2 766.3 μg/kg)最高。可见,杂交种对镉的吸收和转运转移能力高于双亲,预示其在未来应用于植物修复中具有更大的潜力。

    Abstract:

    In order to understand the migration and absorption characteristics of cadmium, the differences in absorption, migration and distribution of cadmium were studied in Sphagneticola calendulacea (indigenous congener), S. trilobata (alien invasive species) and their hybrid treated with Hoagland solution containing 200 μmol/L CdCl2. The results showed that the cadmium concentrations in stems and leaves of three species gradually increased with the time extension of cadmium treatment, and the cadmium concentrations in leaves gradually matched that in stems, while that in roots of three species was always the highest. For the whole plant, cadmium concentration of the hybrid was also the highest under stress. After recovery growth, the cadmium concentrations in roots of hybrid, S. calendulacea, and S. trilobata declined by 50.4%, 35.8%, and 33.7%, respectively. Distribution pattern of cadmium in leaves of three species had not significant change treated with/without CdCl2. The hybrid tended to accumulate cadmium in young and mature leaves. The cadmium concentrations gradually decreased from vein, internal vein and leaf edge of three species, which in internal vein of S. trilobata was the highest (2 766.3 μg/kg). Therefore, the hybrid displayed stronger ability to absorb, transport and transfer cadmium than its parents, suggesting that it had greater potential in phytoremediation in the future.

    参考文献
    [1] ZHAO F J, MA Y B, ZHU Y G, et al. Soil contamination in China:Current status and mitigation strategies[J]. Environ Sci Technol, 2015, 49(2):750-759. doi:10.1021/es5047099.
    [2] YUAN M, HE H D, XIAO L, et al. Enhancement of Cd phyto-extraction by two Amaranthus species with endophytic Rahnella sp. JN27[J]. Chemosphere, 2014, 103:99-104. doi:10.1016/j.chemosphere. 2013.11.040.
    [3] YANG Y, GE Y C, ZENG H Y, et al. Phytoextraction of cadmium-contaminated soil and potential of regenerated tobacco biomass for recovery of cadmium[J]. Sci Rep, 2017, 7(1):7210. doi:10.1038/s41598-017-05834-8.
    [4] HASAN S A, FARIDUDDIN Q, ALI B, et al. Cadmium:Toxicity and tolerance in plants[J]. J Environ Biol, 2009, 30(2):165-174. doi:10. 1016/C2017-0-02050-5.
    [5] TANG Y T, DENG T H B, WU Q H, et al. Designing cropping systems for metal-contaminated sites:A review[J]. Pedosphere, 2012, 22(4):470-488. doi:10.1016/S1002-0160(12)60032-0.
    [6] SONG Y, JIN L, WANG X J. Cadmium absorption and transportation pathways in plants[J]. Int J Phytoremed, 2017, 19(2):133-141. doi:10. 1080/15226514.2016.1207598.
    [7] DAS P, SAMANTARAY S, ROUT G R. Studies on cadmium toxicity in plants:A review[J]. Environ Pollut, 1997, 98(1):29-36. doi:10. 1016/S0269-7491(97)00110-3.
    [8] DALCORSO G, FARINATI S, MAISTRI S, et al. How plants cope with cadmium:Staking all on metabolism and gene expression[J]. J Integr Plant Biol, 2008, 50(10):1268-1280. doi:10.1111/j.1744-7909. 2008.00737.x.
    [9] BENAVIDES M P, GALLEGO S M, TOMARO M L. Cadmium toxi-city in plants[J]. Braz J Plant Physiol, 2005, 17(1):21-34. doi:10.1590/S1677-04202005000100003.
    [10] GARBISU C, ALKORTA I. Phytoextraction:A cost-effective plant-based technology for the removal of metals from the environment[J]. Bioresour Technol, 2001, 77(3):229-236. doi:10.1016/S0960-8524(00)00108-5.
    [11] MARQUES A P G C, RANGEL A O S S, CASTRO P M L. Reme-diation of heavy metal contaminated soils:Phytoremediation as a potentially promising clean-up technology[J]. Crit Rev Environ Sci Technol, 2009, 39(8):622-654. doi:10.1080/10643380701798272.
    [12] HU Y, TIAN S K, FOYER C H, et al. Efficient phloem transport signi-ficantly remobilizes cadmium from old to young organs in a hyper-accumulator Sedum alfredii[J]. J Hazard Mater, 2019, 365:421-429. doi:10.1016/j.jhazmat.2018.11.034.
    [13] FELLER U, ANDERS I, WEI S H. Distribution and redistribution of 109Cd and 65Zn in the heavy metal hyperaccumulator Solanum nigrum L.:Influence of cadmium and zinc concentrations in the root medium[J]. Plants, 2019, 8(9):340. doi:10.3390/plants8090340.
    [14] ELLSTRAND N C. Evolution of invasiveness in plants following hybridization[J]. Biol Invasions, 2009, 11(5):1089-1091. doi:10.1007/s10530-008-9389-9.
    [15] ELLSTRAND N C, SCHIERENBECK K A. Hybridization as a stimulus for the evolution of invasiveness in plants?[J]. Proc Natl Acad Sci USA, 2000, 97(13):7043-7050. doi:10.1073/pnas.97.13.7043.
    [16] LOWE S, BROWNE M, BOUDJELAS S, et al. 100 of the world's worst invasive alien species:A selection from the global invasive species database[R]. Auckland:Invasive Species Specialist Group, 2000.
    [17] WU Y Q, HU Y J, LIAO F L. Wedelia trilobata:A species from introduced to potential invasive[J]. Guihaia, 2005(5):413-418. 吴彦琼, 胡玉佳, 廖富林. 从引进到潜在入侵的植物——南美蟛蜞菊[J]. 广西植物, 2005(5):413-418.
    [18] WU W, ZHOU R C, NI G Y, et al. Is a new invasive herb emerging? Molecular confirmation and preliminary evaluation of natural hybridi-zation between the invasive Sphagneticola trilobata (Asteraceae) and its native congener S. calendulacea in South China[J]. Biol Invasions, 2013, 15(1):75-88. doi:10.1007/s10530-012-0269-y.
    [19] NI G Y, ZHAO P, WU W, et al. A hybrid of the invasive plant Sphagneticola trilobata has similar competitive ability but different response to nitrogen deposition compared to parent[J]. Ecol Res, 2014, 29(2):331-339. doi:10.1007/s11284-014-1130-9.
    [20] SUN Z Y, CHEN Y Q, SCHAEFER V, et al. Responses of the hybrid between Sphagneticola trilobata and Sphagneticola calendulacea to low temperature and weak light characteristic in south China[J]. Sci Rep, 2015, 5(1):16906. doi:10.1038/srep16906.
    [21] PERNIA B, CALABOKIS M, NORIS K, et al. Effects of cadmium in plants of Sphagneticola trilobata (L.) Pruski[J]. Bioagro, 2019, 31(2):133-142.
    [22] ZHU J L, XU Z F, CAO H L, et al. Effect of cadmium on photo-synthetic traits in Wedelia trilobata[J]. Ecol Environ, 2008, 17(2):657-660. doi:10.16258/j.cnki.1674-5906.2008.02.039. 朱建玲, 徐志防, 曹洪麟, 等. 镉对南美蟛蜞菊光合特性的影响[J]. 生态环境, 2008, 17(2):657-660. doi:10.16258/j.cnki.1674-5906.2008. 02.039.
    [23] LIN M Z, LIN N W, QIU X F, et al. Wedelia trilobata's response to heavy metals and heavy metal absorption and enrichment in its body with sludge as a part of growth substrate[J]. J Anhui Agric Univ, 2012, 39(2):286-291. doi:10.13610/j.cnki.1672-352x.2012.02.002. 林茂兹, 林能文, 邱雪芬, 等. 蟛蜞菊对污泥重金属的响应、吸收与富集作用[J]. 安徽农业大学学报, 2012, 39(2):286-291. doi:10. 13610/j.cnki.1672-352x.2012.02.002.
    [24] XIAO N C, ZHANG Y X, SONG B, et al. Enrichment characteristics and application potential of dominant plants for heavy metals in typical cadmium-rich lead-zinc mining areas of Guangdong[J]. Environ Pollut Control, 2021, 43(3):343-347. doi:10.15985/j.cnki.1001-3865.2021. 03.014. 肖乃川, 张云霞, 宋波, 等. 广东省典型富镉铅锌矿区中优势植物重金属富集特性与应用潜力[J]. 环境污染与防治, 2021, 43(3):343-347. doi:10.15985/j.cnki.1001-3865.2021.03.014.
    [25] LU R R, HU Z H, ZHANG Q L, et al. The effect of Funneliformis mosseae on the plant growth, Cd translocation and accumulation in the new Cd-hyperaccumulator Sphagneticola calendulacea[J]. Ecotox Environ Safe, 2020, 203:110988. doi:10.1016/j.ecoenv.2020.110988.
    [26] PAGE V, WEISSKOPF L, FELLER U. Heavy metals in white lupin:Uptake, root-to-shoot transfer and redistribution within the plant[J]. New Phytol, 2006, 171(2):329-341. doi:10.1111/j.1469-8137.2006. 01756.x.
    [27] ZHANG Y X, YU F, ZHANG Y Y, et al. Uptake, translocation and accumulation of cadmium in plant[J]. Chin J Ecol Agric, 2008, 16(5):1317-1321. 张玉秀, 于飞, 张媛雅, 等. 植物对重金属镉的吸收转运和累积机制[J]. 中国生态农业学报, 2008, 16(5):1317-1321.
    [28] CATALDO D A, GARLAND T R, WILDUNG R E. Cadmium distri-bution and chemical fate in soybean plants[J]. Plant Physiol, 1981, 68(4):835-839. doi:10.1104/pp.68.4.835.
    [29] YE W L, GUO G F, WU F, et al. Absorption, translocation, and detoxification of Cd in two different castor bean (Ricinus communis L.) cultivars[J]. Environ Sci Pollut Res, 2018, 25(29):28899-28906. doi:10.1007/s11356-018-2915-0.
    [30] GUO Y, MARSCHNER H. Uptake, distribution, and binding of cadmium and nickel in different plant species[J]. J Plant Nutri, 1995, 18(12):2691-2706. doi:10.1080/01904169509365094.
    [31] ZHANG J B, HUANG W N. Advances on physiological and ecological effects of cadmium on plants[J]. Acta Ecol Sin, 2000, 20(3):514-523. doi:10.3321/j.issn:1000-0933.2000.03.030. 张金彪, 黄维南. 镉对植物的生理生态效应的研究进展[J]. 生态学报, 2000, 20(3):514-523. doi:10.3321/j.issn:1000-0933.2000.03.030.
    [32] WEI S H, ANDERS I, FELLER U. Selective uptake, distribution, and redistribution of 109Cd, 57Co, 65Zn, 63Ni, and 134Cs via xylem and phloem in the heavy metal hyperaccumulator Solanum nigrum L.[J]. Environ Sci Pollut Res, 2014, 21(12):7624-7630. doi:10.1007/s11356-014-2636-y.
    [33] PAGE V, FELLER U. Selective transport of zinc, manganese, nickel, cobalt and cadmium in the root system and transfer to the leaves in young wheat plants[J]. Ann Bot, 2005, 96(3):425-434. doi:10.1093/aob/mci189.
    [34] PIETRINI F, ZACCHINI M, IORI V, et al. Spatial distribution of cadmium in leaves and its impact on photosynthesis:Examples of different strategies in willow and poplar clones[J]. Plant Biol, 2010, 12(2):355-363. doi:10.1111/j.1438-8677.2009.00258.x.
    [35] COSIO C, DESANTIS L, FREY B, et al. Distribution of cadmium in leaves of Thlaspi caerulescens[J]. J Exp Bot, 2005, 56(412):765-775. doi:10.1093/jxb/eri062.
    [36] PAN R C. Plant Physiology[M]. 7th ed. Beijing:Higher Education Press, 2012:32-64. 潘瑞炽. 植物生理学[M]. 第7版. 北京:高等教育出版社, 2012:32-64.
    [37] PERFUS-BARBEOCH L, LEONHARDT N, VAVASSEUR A, et al. Heavy metal toxicity:Cadmium permeates through calcium channels and disturbs the plant water status[J]. Plant J, 2002, 32(4):539-548. doi:10.1046/j.1365-313X.2002.01442.x.
    [38] LLAMAS A, ULLRICH C I, SANZ A. Cd2+ effects on transmembrane electrical potential difference, respiration and membrane permeability of rice (Oryza sativa L) roots[J]. Plant Soil, 2000, 219(1-2):21-28. doi:10.1023/A:1004753521646.
    [39] TIAN S K, XIE R H, WANG H X, et al. Calcium deficiency triggers phloem remobilization of cadmium in a hyperaccumulating species[J]. Plant Physiol, 2016, 172(4):2300-2313. doi:10.1104/pp.16.01348.
    [40] KRUPA Z, SIEDLECKA A, SKORZYNSKA-POLIT E, et al. Heavy metal interactions with plant nutrients[M]//PRASAD M N V, STRZAŁKA K. Physiology and Biochemistry of Metal Toxicity and Tolerance in Plants. Dordrecht:Springer, 2002:287-301. doi:10.1007/978-94-017-2660-3_11.
    [41] DECHAMPS C, ROOSENS N H, HOTTE C, et al. Growth and mineral element composition in two ecotypes of Thlaspi caerulescens on Cd contaminated soil[J]. Plant Soil, 2005, 273(1):327-335. doi:10.1007/s11104-005-0099-0.
    [42] HE B Y, YU D P, CHEN Y, et al. Use of low-calcium cultivars to reduce cadmium uptake and accumulation in edible amaranth (Amar-anthus mangostanus L.)[J]. Chemosphere, 2017, 171:588-594. doi:10.1016/j.chemosphere.2016.12.085.
    [43] HE B Y, LING L, ZHANG L Y, et al. Cultivar-specific differences in heavy metal (Cd, Cr, Cu, Pb, and Zn) concentrations in water spinach (Ipomoea aquatic ‘Forsk’) grown on metal-contaminated soil[J]. Plant Soil, 2015, 386(1):251-262. doi:10.1007/s11104-014-2257-8.
    [44] ZHANG Q L, CHEN G X, SHAO L, et al. The hybridization between Sphagneticola trilobata(L.) Pruski and Sphagneticola calendulacea (L.) Pruski improved the tolerance of hybrid to cadmium stress[J]. Chemosphere, 2020, 249:126540. doi:10.1016/j.chemosphere.2020. 126540.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

黄骏东,柯伟倩,陈广欣,古晓倩,张启雷,彭长连.镉在南美蟛蜞菊、蟛蜞菊及其杂交种中的迁移和分布特征[J].热带亚热带植物学报,2022,30(2):224~232

复制
分享
文章指标
  • 点击次数:196
  • 下载次数: 427
  • HTML阅读次数: 528
  • 引用次数: 0
历史
  • 收稿日期:2021-05-14
  • 最后修改日期:2021-07-28
  • 在线发布日期: 2022-03-30
文章二维码