南亚热带森林2种菌根类型树木水分传导和养分利用策略的对比研究
作者:
基金项目:

南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项(GML2019ZD0408)资助


Comparison Studies on Water Transport and Nutrient Acquisition of Trees with Different Mycorrhiza Types in Subtropical Forest
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [55]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为揭示南亚热带季风常绿阔叶林在季节性干旱加剧和氮沉降增加等环境影响下,菌根树木优势度变化趋势机理,对3种优势EM树木黄杞(Engelhardtia roxburghiana)、锥(Castanopsis chinensis)、黧蒴锥(C. fissa)和3种优势AM树木云南银柴(Aporusa yunnanensis)、山蒲桃(Syzygium levinei)、广东金叶子(Craibiodendron scleranthum var. kwangtungense)的水力性状和养分性状进行了研究。结果表明,EM树木叶片导水率下降50%和88%时的水势(P50P88)和膨压丧失点(Ψtlp)均低于AM树木,边材比导水率(KS)、叶片比导水率(KL)、光合氮利用效率(PNUE)和光合磷利用效率(PPUE)均高于AM树木。可见,EM树木比AM树木具有更强的抗旱能力以及更高的导水效率和养分利用效率,这可能是在干旱加剧和氮沉降增加背景下EM树木优势度增加而AM树木优势度减少的生理机制。

    Abstract:

    To reveal the mechanisms of changing trend of mycorrhizal tree dominance under the environmental influence of increasing seasonal drought and nitrogen deposition in the lower subtropical monsoon evergreen broad-leaved forest, the hydraulic traits and nutrient traits of three ectomycorrhizal (EM), including Engelhardtia roxburghiana, Castanopsis chinensis and C. fissa, and three arbuscular mycorrhizal (AM) dominant trees, including Aporusa yunnanensis, Syzygium levinei and Craibiodendron scleranthum var. kwangtungense, were measured. The results showed that the leaf water potential at which 50% and 88% hydraulic conductance are lost (P50 and P88) and leaf turgor loss point (Ψtlp) of EM trees were lower than those of AM trees, while the sapwood specific hydraulic conductivity (KS), leaf specific hydraulic conductivity (KL), photosynthetic nitrogen use efficiency (PNUE) and photosynthetic phosphorus use efficiency (PPUE) of EM trees were higher than those of AM trees. The results suggested that EM trees have stronger drought resistance ability and higher water and nutrient use efficiency compared with AM trees. This might be the physiological mechanism of increasing dominance of EM trees while decreasing dominance of AM trees under the background of increasing drought and nitrogen deposition.

    参考文献
    [1] ZHOU G Y, WEI X H, WU Y P, et al. Quantifying the hydrological responses to climate change in an intact forested small watershed in southern China[J]. Glob Change Biol, 2011, 17(12):3736-3746. doi:10.1111/j.1365-2486.2011.02499.x.
    [2] LU X K, VITOUSEK P M, MAO Q G, et al. Plant acclimation to long-term high nitrogen deposition in an N-rich tropical forest[J]. Proc Natl Acad Sci USA, 2018, 115(20):5187-5192. doi:10.1073/pnas. 1720777115.
    [3] ZHOU G Y, YAN J H. The influences of regional atmospheric precipitation characteristics and its element inputs on the existence and development of Dinghushan forest ecosystems[J]. Acta Ecol Sin, 2001, 21(12):2002-2012. doi:10.3321/j.issn:1000-0933.2001.12.006.周国逸, 闰俊华. 鼎湖山区域大气降水特征和物质元素输入对森林生态系统存在和发育的影响[J]. 生态学报, 2001, 21(12):20022012. doi:10.3321/j.issn:1000-0933.2001.12.006.
    [4] BRODRIBB T J, HOLBROOK N M, GUTIÉRREZ M V. Hydraulic and photosynthetic co-ordination in seasonally dry tropical forest trees[J]. Plant Cell Environ, 2002, 25(11):1435-1444. doi:10.1046/j.13653040.2002.00919.x.
    [5] ZHANG S B, WEN G J, YANG D X. Drought-induced mortality is related to hydraulic vulnerability segmentation of tree species in a savanna ecosystem[J]. Forests, 2019, 10(8):697-709. doi:10.3390/f10080697.
    [6] HUANG W J, LIU J X, WANG Y P, et al. Increasing phosphorus limitation along three successional forests in southern China[J]. Plant Soil, 2012, 364(1/2):181-191. doi:10.1007/s11104-012-1355-8.
    [7] ZEMUNIK G, TURNER B L, LAMBERS H, et al. Diversity of plant nutrient-acquisition strategies increases during long-term ecosystem development[J]. Nat Plants, 2015, 1(5):15050. doi:10.1038/nplants. 2015.50.
    [8] VAN DER HEIJDEN M G A, BARDGETT R D, VAN STRAALEN N M. The unseen majority:Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems[J]. Ecol Lett, 2008, 11(3):296310. doi:10.1111/j.1461-0248.2007.01139.x.
    [9] WANG B, QIU Y L. Phylogenetic distribution and evolution of mycorrhizas in land plants[J]. Mycorrhiza, 2006, 16(5):299-363. doi:10.1007/s00572-005-0033-6.
    [10] STEIDINGER B S, CROWTHER T W, LIANG J, et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses[J]. Nature, 2019, 569(7756):404-408. doi:10.1038/s41586019-1128-0.
    [11] BRUNDRETT M C, TEDERSOO L. Evolutionary history of mycorrhizal symbioses and global host plant diversity[J]. New Phytol, 2018, 220(4):1108-1115. doi:10.1111/nph.14976.
    [12] ZHENG L, WU X Q. Review on the structure of plant mycorrhiza[J]. J Nanjing For Univ (Nat Sci), 2008, 32(5):135-139. doi:10.3969/j.issn. 1000-2006.2008.05.030.郑玲, 吴小芹. 植物菌根共生体结构的研究进展[J]. 南京林业大学学报(自然科学版), 2008, 32(5):135-139. doi:10.3969/j.issn.10002006.2008.05.030.
    [13] EOM A H, HARTNETT D C, WILSON G W T. Host plant species effects on arbuscular mycorrhizal fungal communities in tallgrass prairie[J]. Oecologia, 2000, 122(3):435-444. doi:10.1007/s004420050050.
    [14] GERATS T, STROMMER J. Petunia[M]. 2nd ed. New York, USA:Springer, 2009:131-156.
    [15] ALLEN M F. Mycorrhizal fungi:Highways for water and nutrients in arid soils[J]. Vadose Zone J, 2007, 6(2):291-297. doi:10.2136/vzj 2006.0068.
    [16] LI R H, ZHU S D, CHEN H Y H, et al. Are functional traits a good predictor of global change impacts on tree species abundance dynamics in a subtropical forest?[J]. Ecol Lett, 2015, 18(11):1181-1189. doi:10.1111/ele.12497.
    [17] ZHU S D, SONG J J, LI R H, et al. Plant hydraulics and photosynthesis of 34 woody species from different successional stages of subtropical forests[J]. Plant Cell Environ, 2013, 36(4):879-891. doi:10.1111/pce.12024.
    [18] SANTIAGO L S, GOLDSTEIN G, MEINZER F C, et al. Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees[J]. Oecologia, 2004, 140(4):543-550. doi:10.1007/s00442-004-1624-1.
    [19] DOMEC J C, GARTNER B L. Cavitation and water storage capacity in bole xylem segments of mature and young Douglas-fir trees[J]. Trees, 2001, 15(4):204-214. doi:10.1007/s004680100095.
    [20] URLI M, PORTÉ A J, COCHARD H, et al. Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees[J]. Tree Physiol, 2013, 33(7):672-683. doi:10.1093/treephys/tpt030.
    [21] MARÉCHAUX I, BARTLETT M K, SACK L, et al. Drought tolerance as predicted by leaf water potential at turgor loss point varies strongly across species within an Amazonian forest[J]. Funct Ecol, 2015, 29(10):1268-1277. doi:10.1111/1365-2435.12452.
    [22] WRIGHT I J, REICH P B, WESTOBY M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428(6985):821-827. doi:10. 1038/nature02403.
    [23] WRIGHT I J, REICH P B, CORNELISSEN J H C, et al. Assessing the generality of global leaf trait relationships[J]. New Phytol, 2005, 166(2):485-496. doi:10.1111/j.1469-8137.2005.01349.x.
    [24] HUANG Z L, KONG G H, WEI P. Plant species diversity dynamics in Dinghu Mountain forests[J]. Chin Biodiv, 1998, 6(2):116-121. doi:10.3321/j.issn:1005-0094.1998.02.006.黄忠良, 孔国辉, 魏平. 鼎湖山植物物种多样性动态[J]. 生物多样性, 1998, 6(2):116-121. doi:10.3321/j.issn:1005-0094.1998.02.006.
    [25] ZOU S, ZHOU G Y, ZHANG Q M, et al. Long-term (1992-2015) dynamics of interspecific associations among tree species in a monsoon evergreen broad-leaved forest in Dinghushan Biosphere Reserve[J]. Acta Ecol Sin, 2019, 39(17):6362-6371. doi:10.5846/stxb201804030753.邹顺, 周国逸, 张倩媚, 等. 1992-2015年鼎湖山季风常绿阔叶林群落种间关联动态[J]. 生态学报, 2019, 39(17):6362-6371. doi:10. 5846/stxb201804030753.
    [26] LIAN J Y, CHEN C, HUANG Z L, et al. Community composition and stand age in a subtropical forest, southern China[J]. Biodiv Sci, 2015, 23(2):174-182. doi:10.17520/biods.2014243.练琚愉, 陈灿, 黄忠良, 等. 鼎湖山南亚热带常绿阔叶林不同成熟度群落特征的比较[J]. 生物多样性, 2015, 23(2):174-182. doi:10. 17520/biods.2014243.
    [27] GUI X J, LIAN J Y, ZHANG R Y, et al. Vertical structure and its biodiversity in a subtropical evergreen broad-leaved forest at Dinghushan in Guangdong Province, China[J]. Biodiv Sci, 2019, 27(6):619629. doi:10.17520/biods.2019107.桂旭君, 练琚愉, 张入匀, 等. 鼎湖山南亚热带常绿阔叶林群落垂直结构及其物种多样性特征[J]. 生物多样性, 2019, 27(6):619-629. doi:10.17520/biods.2019107.
    [28] NIU J Q. An investigation on mycorrhiza from Dinghu Shan[C]//Tropical and Subtropical Forest Ecosystem, Vol. 6. Beijing:Science Press, 1990:37-40.牛家琪. 鼎湖山一些树种的菌根调查[C]//热带亚热带森林生态系统研究, 第6集. 北京:科学出版社, 1990:37-40.
    [29] KONG D L, MA C E, ZHANG Q, et al. Leading dimensions in absorptive root trait variation across 96 subtropical forest species[J]. New Phytol, 2014, 203(3):863-872. doi:10.1111/nph.12842.
    [30] GURMESA G A, LU X K, GUNDERSEN P, et al. Species differences in nitrogen acquisition in humid subtropical forest inferred from 15N natural abundance and its response to tracer addition[J]. Forests, 2019, 10(11):991. doi:10.3390/f10110991.
    [31] ZHUANG X Y, CHEN Y J. Investigation of plant mycorrhizae in secondary forests of Hong Kong[J]. Chin Biodiv, 1997, 5(4):287-292. doi:10.17520/biods.1997049.庄雪影, 陈咏娟. 香港次生林下植物菌根的调查[J]. 生物多样性, 1997, 5(4):287-292. doi:10.17520/biods.1997049.
    [32] SPERRY J S, DONNELLY J R, TYREE M T. A method for measuring hydraulic conductivity and embolism in xylem[J]. Plant Cell Environ, 1988, 11(1):35-40. doi:10.1111/j.1365-3040.1988.tb01774.x.
    [33] SACK L, SCOFFONI C. Measurement of leaf hydraulic conductance and stomatal conductance and their responses to irradiance and dehydration using the Evaporative Flux Method (EFM)[J]. J Vis Exp, 2012(70):e4179. doi:10.3791/4179.
    [34] DUURSMA R, CHOAT B. Fitplc:An R package to fit hydraulic vulnerability curves[J]. J Plant Hydraul, 2017, 4:e002. doi:10.20870/jph.2017.e002.
    [35] TYREE M T, RICHTER H. Alternative methods of analysing water potential isotherms:Some cautions and clarifications:I. The impact of non-ideality and of some experimental errors[J]. J Exp Bot, 1981, 32(128):643-653. doi:10.1093/jxb/32.3.643.
    [36] SCHULTE P J, HINCKLEY T M. A comparison of pressure-volume curve data analysis techniques[J]. J Exp Bot, 1985, 36(171):15901602. doi:10.1093/jxb/36.10.1590.
    [37] BRODRIBB T J, COCHARD H. Hydraulic failure defines the recovery and point of death in water-stressed conifers[J]. Plant Physiol, 2009, 149(1):575-584. doi:10.1104/pp.108.129783.
    [38] KURSAR T A, ENGELBRECHT B M J, BURKE A, et al. Tolerance to low leaf water status of tropical tree seedlings is related to drought performance and distribution[J]. Funct Ecol, 2009, 23(1):93-102. doi:10.1111/j.1365-2435.2008.01483.x.
    [39] BARTLETT M K, SCOFFONI C, SACK L. The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes:A global meta-analysis[J]. Ecol Lett, 2012, 15(5):393-405. doi:10.1111/j.1461-0248.2012.01751.x.
    [40] XU L, HE P C, ZHANG T, et al. Comparative studies on leaf hydraulic traits of six palm (Arecaceae) species originally distributed in different habitats[J]. J Trop Subtrop Bot, 2020, 28(5):472-478. doi:10.11926/jtsb.4199.徐龙, 贺鹏程, 张统, 等. 不同原生境的6种棕榈科植物叶片水力性状的对比研究[J]. 热带亚热带植物学报, 2020, 28(5):472-478. doi:10.11926/jtsb.4199.
    [41] PARKE J L, LINDERMAN R G, BLACK C H. The role of ectomycorrhizas in drought tolerance of Douglas-fir seedlings[J]. New Phytol, 1983, 95(1):83-95. doi:10.1111/j.1469-8137.1983.tb03471.x.
    [42] BOUGHER N L, MALAJCZUK N. Effects of high soil moisture on formation of ectomycorrhizas and growth of karri (Eucalyptus diversicolor) seedlings inoculated with Descolea maculata, Pisolithus tinctorius and Laccaria laccata[J]. New Phytol, 1990, 114(1):87-91. doi:10.1111/j.1469-8137.1990.tb00377.x.
    [43] LUO Z B, LI K, JIANG X N, et al. Ectomycorrhizal fungus (Paxillus involutus) and hydrogels affect performance of Populus euphratica exposed to drought stress[J]. Ann For Sci, 2009, 66:106. doi:10. 1051/forest:2008073.
    [44] CASTAGNERI D, BATTIPAGLIA G, Von Arx G, et al. Tree-ring anatomy and carbon isotope ratio show both direct and legacy effects of climate on bimodal xylem formation in Pinus pinea[J]. Tree Physiol, 2018, 38(8):1098-1109. doi:10.1093/treephys/tpy036.
    [45] KILPELÄINEN J, APHALO P J, LEHTO T. Temperature affected the formation of arbuscular mycorrhizas and ectomycorrhizas in Populus angustifolia seedlings more than a mild drought[J]. Soil Biol Biochem, 2020, 146:107798. doi:10.1016/j.soilbio.2020.107798.
    [46] LUKAC M, GRENNI P, GAMBONI M. Soil Biological Communities and Ecosystem Resilience[M]. New York, USA:Springer, 2017:123142. doi:10.1007/978-3-319-63336-7.
    [47] CORNELISSEN J, AERTS R, CERABOLINI B, et al. Carbon cycling traits of plant species are linked with mycorrhizal strategy[J]. Oecologia, 2001, 129(4):611-619. doi:10.1007/s004420100752.
    [48] REICH P B. The world-wide ‘fast-slow’ plant economics spectrum:A traits manifesto[J]. J Ecol, 2014, 102(2):275-301. doi:10.1111/13652745.12211.
    [49] LIU H, GLEASON S M, HAO G Y, et al. Hydraulic traits are coordinated with maximum plant height at the global scale[J]. Sci Adv, 2019, 5(2):eaav1332. doi:10.1126/sciadv.aav1332.
    [50] YAO G Q, NIE Z F, TURNER N C, et al. Combined high leaf hydraulic safety and efficiency provides drought tolerance in Caragana species adapted to low mean annual precipitation[J]. New Phytol, 2021, 229(1):230-244. doi:10.1111/nph.16845.
    [51] MUHSIN T M, ZWIAZEK J J. Ectomycorrhizas increase apoplastic water transport and root hydraulic conductivity in Ulmus americana seedlings[J]. New Phytol, 2002, 153(1):153-158. doi:10.1046/j. 0028-646X.2001.00297.x.
    [52] BUCCI S J, SCHOLZ F G, CAMPANELLO P I, et al. Hydraulic differences along the water transport system of South American Nothofagus species:Do leaves protect the stem functionality[J]. Tree Physiol, 2012, 32(7):880-893. doi:10.1093/treephys/tps054.
    [53] FAN Y X, LIN F, YANG L M, et al. Decreased soil organic P fraction associated with ectomycorrhizal fungal activity to meet increased P demand under N application in a subtropical forest ecosystem[J]. Biol Fertil Soils, 2018, 54(1):149-161. doi:10.1007/s00374-017-1251-8.
    [54] AVERILL C, BHATNAGAR J M, DIETZE M C, et al. Global imprint of mycorrhizal fungi on whole-plant nutrient economics[J]. Proc Natl Acad Sci USA, 2019, 116(46):23163-23168. doi:10.1073/pnas.1906655116.
    [55] VITOUSEK P M. Litterfall, nutrient cycling, and nutrient limitation in tropical forests[J]. Ecology, 1984, 65(1):285-298. doi:10.2307/1939481.
    引证文献
引用本文

赵敏,练琚愉,刘小容,刘慧,叶清.南亚热带森林2种菌根类型树木水分传导和养分利用策略的对比研究[J].热带亚热带植物学报,2021,29(6):589~596

复制
分享
文章指标
  • 点击次数:468
  • 下载次数: 560
  • HTML阅读次数: 498
  • 引用次数: 0
历史
  • 收稿日期:2020-01-20
  • 最后修改日期:2021-03-06
  • 在线发布日期: 2021-12-02
文章二维码