遮阳对白花前胡叶片光合特性的影响
作者:
基金项目:

浙江省科技计划项目(2017C02040);温州市碳汇研究科技创新团队项目(C20150008);温州市园艺植物育种重点实验室项目(ZD202003)资助


Effect of Shading on Photosynthetic Characteristics of Peucedanum praerupterum Leaves
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    为规范白花前胡(Peucedanum praerupterum)种植和提高产量,对不同光强下白花前胡的光合特性进行了研究。结果表明,与遮阳40%和60%相比,对照(CK)和遮阳20%的白花前胡叶片具有更高的最大电子传递速率[分别为247.129和266.866 μmol/(m2·s)]和最大净光合速率[分别为25.621和28.167 μmol/(m2·s)],且最大净光合速率对应的饱和光强[分别为2 130.419和1 927.804 μmol/(m2·s)]也显著高于遮阳40%和60%处理。不同遮阳处理的白花前胡叶片的光能利用效率和水分利用效率有差异,但光化学猝灭系数和非光化学猝灭系数则无显著差异。这说明白花前胡为典型的阳生植物,光适应性较强,建议选择光强充足的开阔田地栽培白花前胡。

    Abstract:

    To regulate planting and increase yield of Peucedanum praerupterum, the photosynthetic and fluorescence characteristics were studied under different shading, such as full sunlight (CK) and shading 20%, 40%, 60%. The results showed that the maximum electron transfer rate was 247.129 and 266.866 μmol/(m2·s) under CK and shading 20%, with maximum net photosynthetic rate of 25.621 and 28.167 μmol/(m2·s), respectively, which were significantly higher than that of shading 40% and 60% (P<0.05). The saturated light intensity corresponded to the maximum net photosynthetic rate under CK and shading 20% were 2 130.419 and 1 927.804 μmol/(m2·s), respectively, which were significantly higher than those under shading 40% and 60%. The light energy use efficiency and water use efficiency of P. praerupterum leaves had differences among different shading treatments, while the photochemical quenching coefficient and non-photochemical quenching coefficient had no significant difference. Therefore, it was suggested that P. praerupterum was a typical heliophyte with strong adaptability, so that it was beneficial to choose the open field with sufficient light intensity for the cultivation of P. praerupterum.

    参考文献
    [1] XUE J C. Review on active ingredients and related pharmacological action of Peucedanum praeruptorum[J]. Strait Pharm J, 2012, 24(2):34-38. doi:10.3969/j.issn.1006-3765.2012.02.013.薛俊超. 白花前胡化学成分及相关药理作用的研究进展[J]. 海峡药学, 2012, 24(2):34-38. doi:10.3969/j.issn.1006-3765.2012.02.013.
    [2] HE D M, WU F H, KONG L Y. Review on pharmacological action of Peucedanum praeruptorum[J]. Pharm Clin Res, 2007, 15(3):167-170. doi:10.3969/j.issn.1673-7806.2007.03.001.何冬梅, 吴斐华, 孔令义. 白花前胡药理作用的研究进展[J]. 药学与临床研究, 2007, 15(3):167-170. doi:10.3969/j.issn.1673-7806. 2007.03.001.
    [3] GAO C, YAN W D, TIAN D L, et al. Diurnal change in photosynthetic rate of Eucommia ulmoides and its relationship with environmental factors[J]. J CS Univ For Technol, 2011, 31(5):100-104. doi:10.3969/j.issn.1673-923X.2011.05.018.高超, 闫文德, 田大伦, 等. 杜仲光合速率日变化及其与环境因子的关系[J]. 中南林业科技大学学报, 2011, 31(5):100-104. doi:10. 3969/j.issn.1673-923X.2011.05.018.
    [4] Zavala J A, Ravetta D A. Allocation of photoassimilates to biomass, resin and carbohydrates in Grindelia chiloensis as affected by light intensity[J]. Field Crops Res, 2001, 69(2):143-149. doi:10. 1016/S0378-4290(00)00136-2.
    [5] Rezai S, Etemadi N, Nikbakht A, et al. Effect of light intensity on leaf morphology, photosynthetic capacity, and chlorophyll content in sage (Salvia officinalis L.)[J]. Kor J Hort Sci Technol, 2018, 36(1):46-57. doi:10.12972/kjhst.20180006.
    [6] Higashiuchi K, Uno Y, Kuroki S, et al. Effect of light intensity and light/dark period on iridoids in Hedyotis diffusa[J]. Environ Contr Biol, 2016, 54(2):109-116. doi:10.2525/ecb.54.109.
    [7] Li A M, Li S H, Wu X J, et al. Effect of light intensity on leaf photosynthetic characteristics and accumulation of flavonoids in Litho-carpus litseifolius (Hance) Chun. (Fagaceae)[J]. Open J For, 2016, 6(5):445-459. doi:10.4236/ojf.2016.65034.
    [8] ZHAN J C, HUANG W D, WANG L J. Research of weak light stress physiology in plants[J]. Chin Bull Bot, 2003, 20(1):43-50. doi:10. 3969/j.issn.1674-3466.2003.01.005.战吉宬, 黄卫东, 王利军. 植物弱光逆境生理研究综述[J]. 植物学通报, 2003, 20(1):43-50. doi:10.3969/j.issn.1674-3466.2003.01.005.
    [9] Matos F S, Wolfgramm R, Gonçalves F V, et al. Phenotypic plasticity in response to light in the coffee tree[J]. Environ Exp Bot, 2009, 67(2):421-427. doi:10.1016/j.envexpbot.2009.06.018.
    [10] ZHOU X, WANG G B, LIU L, et al. Effects of light intensity on the growth of Camptotheca acuminata seedlings and camptothecin contents[J]. J Nanjing For Univ (Nat Sci), 2016, 40(3):9-14. doi:10.3969/j. issn.1000-2006.2016.03.002.周昕, 汪贵斌, 刘琳, 等. 光强对喜树幼苗生长及喜树碱含量的影响[J]. 南京林业大学学报(自然科学版), 2016, 40(3):9-14. doi:10. 3969/j.issn.1000-2006.2016.03.002.
    [11] Tang Z H, GUO X R, YU J H, et al. Effects of low light intensity on changes of soluble sugars, alkaloids and phytohormones in Catharan-thus roseus seedlings[J]. Acta Ecol Sin, 2007, 27(11):4419-4424. doi:10.3321/j.issn:1000-0933.2007.11.006.唐中华, 郭晓瑞, 于景华, 等. 弱光对长春花(Catharanthus roseus)幼苗中可溶性糖、生物碱及激素含量的影响[J]. 生态学报, 2007, 27(11):4419-4424. doi:10.3321/j.issn:1000-0933.2007.11.006.
    [12] Ma X H, Song L L, Yu W W, et al. Growth, physiological, and biochemical responses of Camptotheca acuminata seedlings to different light environments[J]. Front Plant Sci, 2015, 6:321. doi:10.3389/fpls. 2015.00321.
    [13] MORFOPOULOS C, SPERLICH D, Peñuelas J, et al. A model of plant isoprene emission based on available reducing power captures responses to atmospheric CO2[J]. New Phytol, 2014, 203(1):125-139. doi:10.1111/nph.12770.
    [14] SUN J S, SUN J D, FENG Z Z. Modelling photosynthesis in flag leaves of winter wheat (Triticum aestivum) considering the variation in photosynthesis parameters during development[J]. Funct Plant Biol, 2015, 42(11):1036-1044. doi:10.1071/FP15140.
    [15] Ye Z P, Suggett D J, Robakowski P, et al. A mechanistic model for the photosynthesis-light response based on the photosynthetic electron transport of photosystem II in C3 and C4 species[J]. New Phytol, 2013, 199(1):110-120. doi:10.1111/nph.12242.
    [16] Ye Z P, Kang H J, Yang X L. Light-use efficiency of tomato seedling leaves at different CO2 concentrations[J]. Chin J Appl Ecol, 2016, 27(8):2543-2550. doi:10.13287/j.1001-9332.201608.035.
    [17] Ye Z P, Yang X L, Kang H J. Comparison of light-use and water-use efficiency for C3 and C4 species[J]. Acta Agric Zhejiang, 2016, 28(11):1867-1873. doi:10.3969/j.issn.1004-1524.2016.11.10.叶子飘, 杨小龙, 康华靖. C3和C4植物光能利用效率和水分利用效率的比较研究[J]. 浙江农业学报, 2016, 28(11):1867-1873.
    [18] WHITE A J, CRITCHLEY C. Rapid light curves:A new fluorescence method to assess the state of the photosynthetic apparatus[J]. Photo-synth Res, 1999, 59(1):63-72. doi:10.1023/A:1006188004189.
    [19] LIU Z B, CHENG R M, XIAO W F, et al. Light response charac-teristics of photosynthesis and model comparison of Distylium chinense in different flooding durations[J]. Chin J Appl Ecol, 2015, 26(4):1083-1090.
    [20] WU A J, XU W Z, GUO Y L, et al. Photosynthetic light-response curves of Lespedeza davurica under different water and fertilization conditions[J]. Acta Agrest Sin, 2015, 23(4):785-792. doi:10.11733/j.issn.1007-0435.2015.04.018.吴爱姣, 徐伟洲, 郭亚力, 等. 不同水肥条件下达乌里胡枝子的光合-光响应曲线特征[J]. 草地学报, 2015, 23(4):785-792. doi:10. 11733/j.issn.1007-0435.2015.04.018.
    [21] ZHANG F Q, YANG H X, XU B, et al. Photosynthesis light response characteristics of Camellia azalea and fitting of application models[J]. Ecol Environ Sci, 2015, 24(10):1599-1603. doi:10.16258/j.cnki.1674-5906.2015.10.002.张方秋, 杨会肖, 徐斌, 等. 杜鹃红山茶的光响应特性及其最适模型筛选[J]. 生态环境学报, 2015, 24(10):1599-1603. doi:10.16258/j. cnki.1674-5906.2015.10.002.
    [22] YANG Y N, PAN Y Z, QI Y C, et al. Effect of shading on physiological and ecological characteristics of Osmanthus fragrans[J]. J Trop Subtrop Bot, 2017, 25(1):57-64. doi:10.11926/jtsb.3634.杨亚男, 潘远智, 齐豫川, 等. 遮阴对四季桂生理生态特性的影响[J]. 热带亚热带植物学报, 2017, 25(1):57-64. doi:10.11926/jtsb. 3634.
    [23] Jenkins J P, Richardson A D, Braswell B H, et al. Refining light-use efficiency calculations for a deciduous forest canopy using simultaneous tower-based carbon flux and radiometric measurements[J]. Agric For Meteor, 2007, 143(1/2):64-79. doi:10.1016/j.agrformet. 2006.11.008.
    [24] CosenTino S L, Patanè C, Sanzone E, et al. Leaf gas exchange, water status and radiation use efficiency of giant reed (Arundo donax L.) in a changing soil nitrogen fertilization and soil water availability in a semi-arid Mediterranean area[J]. Eur J Agron, 2016, 72:56-69. doi:10.1016/j.eja.2015.09.011.
    [25] ZHANG L, LIU W Z, XIN G S, et al. Photosynthesis light response curves of three sweet-potato varieties and model fitting[J]. Chin Agric Sci Bull, 2015, 31(15):71-77.张磊, 刘维正, 辛国胜, 等. 3种专用型甘薯光合光响应曲线及其模型拟合研究[J]. 中国农学通报, 2015, 31(15):71-77.
    [26] YE Z P, ZHANG H L, HUANG Z A, et al. Model construction of light use efficiency and water use efficiency based on a photosynthetic mechanistic model of light response[J]. Plant Physiol Commun, 2017, 53(6):1116-1122. doi:10.13592/j.cnki.ppj.2017.0059.叶子飘, 张海利, 黄宗安, 等. 叶片光能利用效率和水分利用效率对光响应的模型构建[J]. 植物生理学报, 2017, 53(6):1116-1122. doi:10.13592/j.cnki.ppj.2017.0059.
    [27] WANG K, ZHU J J, YU L Z, et al. Effects of shading on the photo-synthetic characteristics and light use efficiency of Phellodendron amurense seedlings[J]. Chin J Plant Ecol, 2009, 33(5):1003-1012. doi:10.3773/j.issn.1005-264x.2009.05.020.王凯, 朱教君, 于立忠, 等. 遮阴对黄波罗幼苗的光合特性及光能利用效率的影响[J]. 植物生态学报, 2009, 33(5):1003-1012. doi:10.3773/j.issn.1005-264x.2009.05.020.
    [28] Ogutu B O, Dash J, Dawson T P. Developing a diagnostic model for estimating terrestrial vegetation gross primary productivity using the photosynthetic quantum yield and earth observation data[J]. Glob Change Biol, 2013, 19(9):2878-2892. doi:10.1111/gcb.12261.
    [29] SHI R, SU P X, ZHOU Z J, et al. Photosynthetic characteristics of Potentilla anserine in three different meadow ecosystems[J]. Chin J Ecol, 2018, 37(7):1943-1951. doi:10.13292/j.1000-4890.201807.004.侍瑞, 苏培玺, 周紫鹃, 等. 三种不同类型草甸生态系统下鹅绒委陵菜的光合特性[J]. 生态学杂志, 2018, 37(7):1943-1951. doi:10. 13292/j.1000-4890.201807.004.
    [30] ZHONG P A, SHAO D, HUANG Y J, et al. The photosynthesis characteristics and instantaneous water-use efficiency of Capsicum annuum under different light conditions[J]. Chin J Ecol, 2019, 38(7):2065-2071. doi:10.13292/j.1000-4890.201907.025.钟平安, 邵东, 黄英金, 等. 不同光环境下辣椒光合特性和瞬时水分利用效率[J]. 生态学杂志, 2019, 38(7):2065-2071. doi:10.13292/j.1000-4890.201907.025.
    [31] BAI L N, WANG Z L, HE K N, et al. Responses of water use efficiency of 4 drought resistant tree species to water and light in Qinghai[J]. Chin Agric Sci Bull, 2016, 32(16):12-17. doi:10.11924/j. issn.1000-6850.casb16010149.白灵娜, 王占林, 贺康宁, 等. 青海4种抗旱树种水分利用效率对水分和光照的响应[J]. 中国农学通报, 2016, 32(16):12-17. doi:10. 11924/j.issn.1000-6850.casb16010149.
    [32] Schull M A, Anderson M C, Houborg R, et al. Thermal-based modeling of coupled carbon, water, and energy fluxes using nominal light use efficiencies constrained by leaf chlorophyll obser-vations[J]. Biogeosci, 2015, 12(5):1511-1523. doi:10.5194/bg-12-1511-2015.
    [33] MENG F C, ZHANG J H, HAO C, et al. Effects of elevated CO2 and different irrigation on photosynthetic parameters and yield of maize in northeast China[J]. Acta Ecol Sin, 2015, 35(7):2126-2135. doi:10. 5846/stxb201306041336.孟凡超, 张佳华, 郝翠, 等. CO2浓度升高和不同灌溉量对东北玉米光合特性及产量的影响[J]. 生态学报, 2015, 35(7):2126-2135. doi:10.5846/stxb201306041336.
    [34] YE Z P, DUAN S H, KANG H J. Comparison of water use efficiency for Glycine max leaves under different CO2 concentration[J]. J Nucl Agric Sci, 2019, 33(5):1006-1015. doi:10.11869/j.issn.100-8551.2019. 05.1006.叶子飘, 段世华, 康华靖. 不同CO2浓度下大豆叶片的水分利用效率比较[J]. 核农学报, 2019, 33(5):1006-1015. doi:10.11869/j.issn. 100-8551.2019.05.1006.
    [35] SU J, FANG Y M, ZHANG Q, et al. Effects of shading on photo-synthetic characteristics of Callicarpa bodinieri Levl.[J]. J NE For Univ, 2019, 47(11):47-51. doi:10.13759/j.cnki.dlxb.2019.11.010.苏金, 方炎明, 张强, 等. 遮阴对紫珠光合特性的影响[J]. 东北林业大学学报, 2019, 47(11):47-51. doi:10.13759/j.cnki.dlxb.2019.11.010.
    相似文献
    引证文献
引用本文

王盼,周钰鸿,徐攀,浦锦宝,梁卫青,俞叶飞,陈子林,康华靖.遮阳对白花前胡叶片光合特性的影响[J].热带亚热带植物学报,2021,29(5):530~538

复制
分享
文章指标
  • 点击次数:427
  • 下载次数: 549
  • HTML阅读次数: 369
  • 引用次数: 0
历史
  • 收稿日期:2020-12-07
  • 最后修改日期:2021-01-13
  • 在线发布日期: 2021-09-23
文章二维码