未来气候变化对孑遗植物鹅掌楸地理分布的影响
作者:
基金项目:

国家自然科学基金项目(31770718,31470660)资助


Potential Impacts of Climate Change in Future on the Geographical Distributions of Relic Liriodendron chinense
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [42]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为了解未来气候波动对鹅掌楸(Liriodendron chinense)潜在适生区的影响,利用最大熵模型(Maxent)和地理信息系统(ArcGIS)软件,结合物种地理分布点信息,对鹅掌楸当前适生区分布进行了模拟和划分,同时预测了2061-2080年间气候变化条件下鹅掌楸的潜在适生分布区变化,进而分析影响鹅掌楸地理分布的主要气候因子。结果表明,Maxent模型预测的准确性较高,受试者工作特征曲线(ROC)的曲线下面积(AUC)均大于0.9。在未来4种不同的气候变化场景下(RCP 2.6、RCP 4.5、RCP 6.0和RCP 8.5)鹅掌楸的地理分布发生变化,在RCP 4.5情景下,鹅掌楸适生面积明显增加;RCP 8.5情景下适生面积明显减少,尤其在贵州地区以及贵州、重庆与湖南的交界处。因此,鹅掌楸适生区分布的几何中心不变,而适生面积随着温室气体浓度的增加呈现先增加后减少的趋势。昼夜温差月均值、最湿季降雨和最干季降雨是影响鹅掌楸地理分布的主要气候因子,其累计贡献率达77.1%。

    Abstract:

    It is of great significance to quantify the impacts of future climate fluctuation on the potential suitable area of Liriodendron chinense and to analyze the climatic factors affecting its distributions, so that to better protect its genetic resources. The Maxent model and ArcGIS software, combined with geographic distribution data, are used to predict the distribution of current and future (2061-2080) potential suitable areas of L. chinense, the distribution of potential suitable areas of L. chinense under future climate fluctuations, and the main climatic factors affecting the geographical distribution of L. chinense were also discussed. The results showed that Maxent model was a good choice when applying to predict the suitable distribution areas of L. chinense due to its high accuracy, and the area under the curve (AUC) of the working characteristic curve (ROC) of subjects is greater than 0.9. The geographic distribution of L. chinense would change with four potential scenarios of carbon emission (RCP 2.6, RCP 4.5, RCP 6.0, RCP 8.5) in future. The suitable area of L. chinense increase significantly under the condition of RCP4.5, which was significantly reduced under the condition of RCP 8.5, especially in Guizhou and the border of Chongqing, Guizhou and Hunan. Therefore, with the increase of greenhouse gas concentration, the suitable distribution area of L. chinense will increase at first and then decrease, while the distribution geographic center will keep unchanged. The three variables of monthly mean diurnal range, precipitation of wettest and driest quarters are the main factors affecting the geographic distribution of L. chinense with the total contribution rate of 77.1%.

    参考文献
    [1] Bellard C, Bertelsmeier C, Leadley P, et al. Impacts of climate change on the future of biodiversity[J]. Ecol Lett, 2012, 15(4):365-377. doi:10.1111/j.1461-0248.2011.01736.x.
    [2] Wu X P, Lin X, Zhang Y, et al. Impacts of climate change on ecosystem in priority areas of biodiversity conservation in China[J]. Chin Sci Bull, 2014, 59(34):4668-4680. doi:10.1007/s11434-014-0612-z.
    [3] Grimm N, Chapin F S, Carter S L, et al. Current and future impacts of climate and global change on biodiversity and the structure and functioning of ecosystems[R]//97th ESA Annual Convention 2012. Washington, DC:ESA. 2012
    [4] YING L X, LIU Y, CHEN S T, et al. Simulation of the potential range of Pistacia weinmannifolia in southwest China with climate change based on the maximum-entropy (Maxent) model[J]. Biodiv Sci, 2016, 24(4):453-461. doi:10.17520/biods.2015246. 应凌霄, 刘晔, 陈绍田, 等. 气候变化情景下基于最大熵模型的中国西南地区清香木潜在分布格局模拟[J]. 生物多样性, 2016, 24(4):453-461. doi:10.17520/biods.2015246.
    [5] Descombes P, Wisz M S, Leprieur F, et al. Forecasted coral reef decline in marine biodiversity hotspots under climate change[J]. Glob Change Biol, 2015, 21(7):2479-2487. doi:10.1111/gcb.12868.
    [6] Allen J L, Lendemer J C. Climate change impacts on endemic, high-elevation lichens in a biodiversity hotspot[J]. Biodiv Conserv, 2016, 25(3):555-568. doi:10.1007/s10531-016-1071-4.
    [7] Pachauri R K, Reisinger A. Climate change 2014:synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change[J]. J Romance Studies, 2014, 4(2):85-88.
    [8] OUYANG Z Y, LIU J G, XIAO H, et al. An assessment of giant panda habitat in Wolong Nature Reserve[J]. Acta Ecol Sin, 2001, 21(11):1869-1874. doi:10.3321/j.issn:1000-0933.2001.11.018. 欧阳志云, 刘建国, 肖寒, 等. 卧龙自然保护区大熊猫生境评价[J]. 生态学报, 2001, 21(11):1869-1874. doi:10.3321/j.issn:1000-0933. 2001.11.018.
    [9] ZHANG H, ZHAO H X, WANG H. Potential geographical distribution of Populus euphratica in China under future climate change scenarios based on Maxent model[J]. Acta Ecol Sin, 2020, 40(18):6552-6563. doi:10.5846/stxb201906111232. 张华, 赵浩翔, 王浩. 基于Maxent模型的未来气候变化情景下胡杨在中国的潜在地理分布[J]. 生态学报, 2020, 40(18):6552-6563. doi:10.5846/stxb201906111232.
    [10] Gelvizgelvez S M, Pavon N P, Illoldirangel P, et al. Ecological niche modeling under climate change to select shrubs for ecological restoration in Central Mexico[J]. Ecol Eng, 2015, 74:302-309.
    [11] WU J G. Potential effects of climate change on the distributions of 5 plants in China[J]. J Trop Subtrop Bot, 2010, 18(5):511-522. doi:10. 3969/j.issn.1005-3395.2010.05.007. 吴建国. 气候变化对5种植物分布的潜在影响[J]. 热带亚热带植物学报, 2010, 18(5):511-522. doi:10.3969/j.issn.1005-3395.2010.05. 007.
    [12] HU X K, XIA S, GUO Y H, et al. Ecological niche modeling and its applications in research on transmission risks of parasitic diseases[J]. Chin J Parasitol Parasit Dise, 2020, 38(2):238-244. doi:10.12140/j. issn.1000-7423.2020.02.017. 胡小康, 夏尚, 郭云海, 等. 生态位模型及其在寄生虫病传播风险研究中的应用[J]. 中国寄生虫学与寄生虫病杂志, 2020, 38(2):238-244. doi:10.12140/j.issn.1000-7423.2020.02.017.
    [13] CAO X F, QIAN G L, HU B S, et al. Prediction of potential suitable distribution area of Flaveria bidentis in China based on niche mode[J]. Chin J Appl Ecol, 2010, 21(12):3063-3069. 曹向锋, 钱国良, 胡白石, 等. 采用生态位模型预测黄顶菊在中国的潜在适生区[J]. 应用生态学报, 2010, 21(12):3063-3069.
    [14] Braunisch V, SUCHANT R. A model for evaluating the ‘Habitat Potential’ of a landscape for capercaillie Tetrao urogallus:A tool for conservation planning[J]. Wildlife Biol, 2007, 13(S1):21-33. doi:10. 2981/0909-6396(2007)13[21:AMFETH]2.0.CO;2.
    [15] Phillips S J, Anderson R P, SCHAPIRE R E. Maximum entropy modeling of species geographic distributions[J]. Ecol Model, 2006, 190(3/4):231-259.
    [16] Hirzel A H, Hausser J, Chessel D, et al. Ecological-niche factor analysis:How to compute habitat-suitability maps without absence data?[J]. Ecology, 2002, 83(7):2027-2036. doi:10.1890/0012-9658(2002)083[2027:ENFAHT]2.0.CO;2.
    [17] Honig M A, Cowling R M, RICHARDSON D M. The invasive potential of Australian banksias in South African fynbos:A comparison of the reproductive potential of Banksia ericifolia and Leucadendron laureolum[J]. Austr Ecol, 1992, 17(3):305-314. doi:10.1111/j.1442-9993.1992.tb00812.x.
    [18] Carpenter G, Gillison A N, WINTER J. DOMAIN:A flexible modelling procedure for mapping potential distributions of plants and animals[J]. Biodiv Conserv, 1993, 2(6):667-680. doi:10.1007/BF00051966.
    [19] Phillips S J, Dudik M, Schapire R E, et al. A maximum entropy approach to species distribution modeling[C]//International Conference on Machine Learning. Banff, Canada:ACM, 2004:655-662.
    [20] Kumar S, Stohlgren T J. Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia[J]. J Ecol Nat Environ, 2009, 1(4):94-98. doi:10.5897/JENE.9000071.
    [21] XING D L, HAO Z Q. The principle of maximum entropy and its applications in ecology[J]. Biodiv Sci, 2011, 19(3):295-302. doi:10. 3724/SP.J.1003.2011.08318. 邢丁亮, 郝占庆. 最大熵原理及其在生态学研究中的应用[J]. 生物多样性, 2011, 19(3):295-302. doi:10.3724/SP.J.1003.2011.08318.
    [22] Estes L D, Bradley B A, Beukes H, et al. Comparing mecha-nistic and empirical model projections of crop suitability and produc-tivity:Implications for ecological forecasting[J]. Glob Ecol Biogeogr, 2013, 22(8):1007-1018. doi:10.1111/geb.12034.
    [23] ZHANG H J, CHEN Y, HUANG L J, et al. Predicting potential geogra-phic distribution of Mikania micrantha planting based on ecological niche models in China[J]. Trans Chin Soc Agric Eng, 2011, 27(S1):413-418. 张海娟, 陈勇, 黄烈健, 等. 基于生态位模型的薇甘菊在中国适生区的预测[J]. 农业工程学报, 2011, 27(S1):413-418.
    [24] LI H G, CHEN L, LIANG C Y, et al. A case study on provenance testing of tulip tree (Liriodendron spp.)[J]. China For Sci Technol, 2005, 19(5):13-16. doi:10.3969/j.issn.1000-8101.2005.05.005. 李火根, 陈龙, 梁呈元, 等. 鹅掌楸属树种种源试验研究[J]. 林业科技开发, 2005, 19(5):13-16. doi:10.3969/j.issn.1000-8101.2005.05. 005.
    [25] HE S A, HAO R M, TANG S J. A study on the ecological factors of endangering mechanism of Liriodendron chinense[J] J Plant Resour Environ, 1996, 5(1):1-8. 贺善安, 郝日明, 汤诗杰. 鹅掌楸致濒的生态因素研究[J]. 植物资源与环境, 1996, 5(1):1-8.
    [26] GUAN L H, WANG G, CAO J, et al. Discussion on current status, problems and countermeasures of industrialization for Liriodendron chinense in Hubei Province[J]. Hubei For Sci Technol, 2016, 45(1):7-11,49. doi:10.3969/j.issn.1004-3020.2016.01.002. 管兰华, 王刚, 曹健, 等. 湖北省鹅掌楸发展现状、问题及对策[J]. 湖北林业科技, 2016, 45(1):7-11,49. doi:10.3969/j.issn.1004-3020. 2016.01.002.
    [27] ZHANG G. Distribution, suitable range and cultivation technique of Liriodendron in Guizhou Province[J]. Hubei For Sci Technol, 2011, 40(2):67-69. 张果. 鹅掌楸属植物在贵州省分布、适生范围及栽培技术[J]. 湖北林业科技, 2011, 40(2):67-69. doi:10.3969/j.issn.1004-3020.2011.02. 019.
    [28] YANG Y Y. Study on population dynamics and ecological adaptation of rare branch ornamental Liriodendron chinense[D]. Chengdu:Chengdu University of Technology, 2018. 杨元媛. 四川省珍稀观赏植物鹅掌楸种群动态和生态适应性研究[D]. 成都:成都理工大学, 2018.
    [29] HAO R M, HE S A, TANG S J, et al. Geographical distribution of Liriodendron chinense in china and its significance[J]. J Plant Resour Environ, 1995, 4(1):1-6. 郝日明, 贺善安, 汤诗杰, 等. 鹅掌楸在中国的自然分布及其特点[J]. 植物资源与环境, 1995, 4(1):1-6.
    [30] HE S A, HAO R M. Study on the natural population dynamics and the endangering habitat of Liriodendron chinense in China[J]. Chin J Plant Ecol, 1999, 23(1):87-95. 贺善安, 郝日明. 中国鹅掌楸自然种群动态及其致危生境的研究[J]. 植物生态学报, 1999, 23(1):87-95.
    [31] LI K Q. Studies on population genetics and molecular phylogeography of Liriodendron[D]. Nanjing:Nanjing Forestry University, 2013:1-116. 李康琴. 鹅掌楸属群体遗传结构及分子系统地理学研究[D]. 南京:南京林业大学, 2013:1-116.
    [32] LUO G Z, SHI J S, YIN T M, et al. Comparison of genetic diversity between Liriodendron tulipifera Linn. and Liriodendron chinense (Hemsl). Sarg. by means of RAPD markers[J]. J Plant Resour Environ, 2000, 9(2):9-13. doi:10.3969/j.issn.1674-7895.2000.02.003. 罗光佐, 施季森, 尹佟明, 等. 利用RAPD标记分析北美鹅掌楸与鹅掌楸种间遗传多样性[J]. 植物资源与环境学报, 2000, 9(2):9-13. doi:10.3969/j.issn.1674-7895.2000.02.003.
    [33] HUANG J Q, ZHOU J, FAN R W, et al. The observation of cell phytomorphology of the double fertilization and embryogenesis in Liriodendron chinense (Hemsl.) Sary.[J]. Chin Bull Bot, 1995, 12(3):45-47,50. 黄坚钦, 周坚, 樊汝汶. 中国鹅掌楸双受精和胚胎发生的细胞形态学观察[J]. 植物学报, 1995, 12(3):45-47,50.
    [34] ZHANG X F, LI H G, YOU L X, et al. Variation and genetic stability of two-year-old Liriodendron seedling growth for 39 mating combi-nations[J]. J Zhejiang Agric For Univ, 2011, 28(1):103-108. doi:10. 3969/j. issn.2095-0756.2011.01.016. 张晓飞, 李火根, 尤录祥, 等. 鹅掌楸不同交配组合子代苗期生长变异及遗传稳定性分析[J]. 浙江农林大学学报, 2011, 28(1):103-108. doi:10.3969/j.issn.2095-0756.2011.01.016.
    [35] YAO J X. Studies on the molecular mechanism of heterosis in Liriodendron based on SSR markers[D]. Nanjing:Nanjing Forestry University, 2013. 姚俊修. 鹅掌楸杂种优势分子机理研究[D]. 南京:南京林业大学, 2013.
    [36] CAI W J, DOU X, CAO H D, et al. Effect of combined fertilization of NPK on initial growth of young Liriodendron chinese×L. tulipifera plantation[J]. J Nanjing For Univ (Nat Sci), 2011, 35(4):27-33. doi:10.3969/j.issn.1000-2006.2011.04.006. 蔡伟建, 窦霄, 高捍东, 等. 氮磷钾配比施肥对杂交鹅掌楸幼林初期生长的影响[J]. 南京林业大学学报(自然科学版), 2011, 35(4):27-33. doi:10.3969/j.issn.1000-2006.2011.04.006.
    [37] Sillero N. What does ecological modelling model? A proposed classification of ecological niche models based on their underlying methods[J]. Ecol Model, 2011, 222(8):1343-1346. doi:10.1016/j. ecolmodel.2011.01.018.
    [38] Swets J A. Measuring the accuracy of diagnostic systems[J]. Science, 1988, 240(4857):1285-1293. doi:10.1126/science.3287615.
    [39] WU J G. The potential effects of climate change on the distributions of 7 plants in China[J]. Guihaia, 2011, 31(5):595-607,694. doi:10.3969/j.issn.1000-3142.2011.05.008. 吴建国. 气候变化对我国7种植物潜在分布的影响[J]. 广西植物, 2011, 31(5):595-607, 694. doi:10.3969/j.issn.1000-3142.2011.05.008.
    [40] Parmesan C. Ecological and evolutionary responses to recent climate change[J]. Annu Rev Ecol Evol Syst, 2006, 37(1):637-669. doi:10.1146/annurev.ecolsys.37.091305.110100.
    [41] GUAN X Y, SHI W, CAO K F. Effect of climate change in future on geographical distribution of widespread Quercus acutissima and analysis of dominant climatic factors[J]. J Trop Subtrop Bot, 2018, 26(6):661-668. doi:10.11926/jtsb.3898. 关心怡, 石慰, 曹坤芳. 未来气候变化对广布种麻栎地理分布的影响和主导气候因子分析[J]. 热带亚热带植物学报, 2018, 26(6):661-668. doi:10.11926/jtsb.3898.
    [42] HU X G, JIN Y Q, WANG X R, et al. Predicting impacts of future climate change on the distribution of the widespread conifer Platy-cladus orientalis[J]. PLoS One, 2015, 10(7):e0132326. doi:10.1371/journal.pone.0132326.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

翟新宇,申宇芳,朱圣华,涂忠华,张成阁,李火根.未来气候变化对孑遗植物鹅掌楸地理分布的影响[J].热带亚热带植物学报,2021,29(2):151~161

复制
分享
文章指标
  • 点击次数:631
  • 下载次数: 781
  • HTML阅读次数: 383
  • 引用次数: 0
历史
  • 收稿日期:2020-10-14
  • 最后修改日期:2020-11-03
  • 在线发布日期: 2021-03-20
文章二维码