To explore the appropriate salinity and appropriate region of Sesuvium portulacastrum growth, the growth and chlorophyll fluorescence parameters were measured simulated artificial ecological floating bed for hydroponics in constant temperature incubator. The results showed that the growth of S. portulacastrum was well at 0-15‰ salinity conditions, and seawater with 10‰ salinity promoted its growth. The relative growth rate and fluorescence parameters were inhibited when the salinity was 5‰ and above 20‰. The light energy utilization and electron transfer efficiency of S. portulacastrum decreased under salt stress, and regulatory energy dissipation increased, thus affecting photosynthesis. When salinity reached 30‰, S. portulacastrum death finally. Therefore, S. portulacastrum had a good potential for ecological restoration and marine vegetables development at the appropriate temperature, the salinity of 0-15‰ water area could be the restoration application area, while 10‰ salinity could promote its growth and cultivation of marine vegetables.
[1] TANG C L, KE P, LU D Q, et al. Flora Reipublicae Popularis Sinicae, Tomus 26[M]. Beijing:Science Press, 1996:93-158. 唐昌林, 柯平, 鲁德全, 等. 中国植物志, 第26卷[M]. 北京:科学出版社, 1996:93-158.
[2] ZHOU Y. Regulation mechanism of plasma membrane Na+/H+ anti-porter of Sesuvium portulacastrum L.[D]. Wuhan:Huazhong Agricultural University, 2015. 周扬. 海马齿细胞膜Na+/H+逆转运蛋白功能的调控机理[D]. 武汉:华中农业大学, 2015.
[3] YANG F, YANG M F, ZHENG S H, et al. Study on the in-situ remediation effects of Sesuvium portulacastrum ecological floating beds in Dongshan Bay[J]. J Fisheries Res, 2019, 41(3):225-233. doi:10.14012/j.cnki.fjsc.2019.03.006. 杨芳, 杨妙峰, 郑盛华, 等. 东山湾海马齿生态浮床原位修复效果研究[J]. 渔业研究, 2019, 41(3):225-233. doi:10.14012/j.cnki.fjsc. 2019.03.006.
[4] TANG T H. Purification effect, mechanism and engineering demonstration of Myriophyllum aquaticum floating bed for eutrophic water[D]. Suzhou:Suzhou University Science and Technology, 2019. 汤同欢. 粉绿狐尾藻浮床对富营养水体的净化效果、机制研究及工程示范[D]. 苏州:苏州科技大学, 2019.
[5] YAN T L, ZHONG C R, LIU Q, et al. Effects of Pb and Zn on the growth and physiological response of Sesuvium portulacastrum[J]. Guihaia, 2015, 35(5):668-672. doi:10.11931/guihaia.gxzw201307017. 严廷良, 钟才荣, 刘强, 等. 海马齿对重金属Pb、Zn胁迫的生长及生理生化响应[J]. 广西植物, 2015, 35(5):668-672. doi:10.11931/guihaia.gxzw201307017.
[6] LI W L, LUO D L, YANG F, et al. Effects of salinity on growth, physiology and biochemistry of hydroponic Sesuvium portulacastrum[J]. J Xiamen Univ (Nat Sci), 2019, 58(1):63-69. doi:10.6043/j.issn. 0438-0479.201803036. 李卫林, 罗冬莲, 杨芳, 等. 盐度对水培海马齿生长和生理生化因子的影响[J]. 厦门大学学报(自然科学版), 2019, 58(1):63-69. doi:10.6043/j.issn.0438-0479.201803036.
[7] FENG J X, LIN Y Y, YANG Y, et al. Tolerance and bioaccumulation of combined copper, zinc, and cadmium in Sesuvium portulacastrum[J]. Mar Poll Bull, 2018, 131:416-421. doi:10.1016/j.marpolbul.2018.04.049.
[8] YANG C L, DUAN R J, LI R M, et al. The physiological characteristics of salt-tolerance in Sesuvium portulacastrum L.[J]. Acta Ecol Sin, 2010, 30(17):4617-4627. 杨成龙, 段瑞军, 李瑞梅, 等. 盐生植物海马齿耐盐的生理特性[J]. 生态学报, 2010, 30(17):4617-4627.
[9] JEFFREY S W, HUMPHREY G F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton[J]. Biol Phy Pflan, 1975, 167(2):191-194. doi:10.1016/S0015-3796(17)30778-3.
[10] YE J Y. Arnon calculation methods in chlorophyll content test[J]. Plant Physiol Commun, 1985(6):69. doi:10.13592/j.cnki.ppj.1985.06.028. 叶济宇. 关于叶绿素含量测定中的Arnon计算公式[J]. 植物生理学通讯, 1985(6):69. doi:10.13592/j.cnki.ppj.1985.06.028.
[11] SHANGGUAN Z P, SHAO M G, DYCKMANS J. Effects of nitrogen nutrition and water deficit on net photosynthetic rate and chlorophyll fluorescence in winter wheat[J]. J Plant Physiol, 2000, 156(1):46-51. doi:10.1016/S0176-1617(00)80271-0.
[12] SONG J, SHI G W, GAO B, et al. Waterlogging and salinity effects on two Suaeda salsa populations[J]. Physiol Plant, 2011, 141(4):343-351. doi:10.1111/j.1399-3054.2011.01445.x.
[13] LI M H, HU Z H, YANG Y P, et al. Influence of enhanced UV-B radiation on chlorophyll fluorescence characteristics of soybean[J]. Environ Sci, 2009, 30(12):3669-3675. doi:10.3321/j.issn:0250-3301. 2009.12.037. 李茂涵, 胡正华, 杨燕萍, 等. UV-B辐射增强对大豆叶绿素荧光特性的影响[J]. 环境科学, 2009, 30(12):3669-3675. doi:10.3321/j. issn:0250-3301.2009.12.037.
[14] FLOWERS T J, GAUR P M, GOWDA C L L, et al. Salt sensitivity in chickpea[J]. Plant Cell Environ, 2010, 33(4):490-509. doi:10.1111/j. 1365-3040.2009.02051.x.
[15] LIAO Y, PENG Y G, CHEN G Z. Research advances in plant salt-tolerance mechanism[J]. Acta Ecol Sin, 2007, 27(5):2077-2089. doi:10.3321/j.issn:1000-0933.2007.05.049. 廖岩, 彭友贵, 陈桂珠. 植物耐盐性机理研究进展[J]. 生态学报, 2007, 27(5):2077-2089. doi:10.3321/j.issn:1000-0933.2007.05.049.
[16] CHEN J M, FENG Y F, LI Y H, et al. Effects of salt stress on the root activity and the total antioxidant capacity of Sesuvium portulacastrum[J]. J Quanzhou Norm Univ, 2016, 34(2):10-13. doi:10.3969/j.issn. 1009-8224.2016.02.003. 陈景明, 冯永丰, 李裕红, 等. 盐胁迫对海马齿根系活力及总抗氧化能力的影响[J]. 泉州师范学院学报, 2016, 34(2):10-13. doi:10. 3969/j.issn.1009-8224.2016.02.003.
[17] LIN C C, KAO C H. Effect of NaCl stress on H2O2 metabolism in rice leaves[J]. Plant Growth Regul, 2020, 30(2):151-155. doi:10.1023/A:1006345126589.
[18] ZHU J K. Plant salt tolerance[J]. Trends Plant Sci, 2001, 6(2):66-71. doi:10.1016/S1360-1385(00)01838-0.
[19] DEINLEIN U, STEPHAN A B, HORIE T, et al. Plant salt-tolerance mechanisms[J]. Trends Plant Sci, 2014, 19(6):371-379. doi:10.1016/j. tplants.2014.02.001.
[20] GAN H H, ZHAO S, GAO M Y, et al. Effect of salicylic acid on photosynthesis and ion distribution of Ulmus pumila seedlings under NaCl stress[J]. Acta Bot Boreali-Occid Sin, 2020, 40(3):478-489. doi:10.7606/j.issn.1000-4025.2020.03.0478. 甘红豪, 赵帅, 高明远, 等. 外源水杨酸对NaCl胁迫下白榆幼苗光合作用及离子分配的影响[J]. 西北植物学报, 2020, 40(3):478-489. doi:10.7606/j.issn.1000-4025.2020.03.0478.
[21] LIN J. Effects of salt stress on the photosynthesis characteristics of Elaeagnus moorcroftii Wall. ex Schlecht[D]. Ji'nan:Shandong Normal University, 2017:1-85. 林静. NaCl胁迫对大果沙枣光合特性的影响[D]. 济南:山东师范大学, 2017:1-85.
[22] AHMAD R, LIM C J, KWON S Y. Glycine betaine:a versatile compound with great potential for gene pyramiding to improve crop plant performance against environmental stresses[J]. Plant Biotechnol Rep, 2012, 7(1):49-57. doi:10.1007/s11816-012-0266-8.
[23] JIANG Y J, QIU Y P, HU Y R, et al. Heterologous expression of AtWRKY57 confers drought tolerance in Oryza sativa[J]. Front Plant Sci, 2016, 7:145. doi:10.3389/fpls.2016.00145.
[24] XU L, CHEN S Y, XIE D S, et al. Purification of eutrophic water by native aquatic plants[J]. J Trop Subtrop Bot, 2019, 27(6):642-648. doi:10.11926/jtsb.4047. 徐蕾, 陈思宇, 谢东升, 等. 乡土水生植物对富营养化水体的净化效果研究[J]. 热带亚热带植物学报, 2019, 27(6):642-648. doi:10.11926/jtsb.4047.