岩溶与非岩溶区典型植物最适光合模型和光合特征研究
作者:
基金项目:

广西创新驱动发展专项(AA-17204087-9);广西自然科学基金项目(2018GXNSFAA294023,2019GXNSFBA245036);国家自然科学基金项目(41830648,31870382,32060243,32060369);广西植物研究所基本业务费(18005);广西喀斯特植物保育与恢复生态学重点实验室自主研究课题(19-A-04-03,18-A-02-01,19-050-6);广西科学院基本业务费(2019YJJ1009)资助


Studies on Optimal Photosynthetic Biochemical Model and Photosynthetic Characteristics of Typical Plants in Karst and Non-karst Regions
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为探讨不同生境典型植物光合特征对主要环境因子的响应,选择Ethier&Livingston、Ellsworth和Sharkey等3种光合生化模型拟合我国西南岩溶与非岩溶区8种典型植物的A-Ci曲线。结果表明,用Ethier & Livingston模型拟合的A-Ci曲线要优于Ellsworth模型和Sharkey模型,拟合方程的决定系数(R2)为0.98~0.99(P < 0.01)。从Ethier&Livingston模型拟合的Vcmax和Jmax来看,岩溶区和非岩溶区乡土植物间的差异不显著,但都显著低于外来速生植物尾巨桉(Eucalyptus grandis×E.urophylla)。岩溶区和非岩溶区乡土植物的光合特征参数(Vcmax,25和Jmax,25)均与空气温度和土壤水分含量呈显著相关(P < 0.05)。除非岩溶区乡土植物的Jmax,25外,所有植物的光合特征参数与土壤水分拟合方程的R2均低于其与环境温度的,表明环境温度对典型植物Vcmax,25和Jmax,25的影响强于土壤含水量。

    Abstract:

    The aim was to screen the optimal model in fitting photosynthetic CO2response curve (A-Ci curve) of plants in different habitats, three biochemical models, including Ethier & Livingston, Ellsworth, and Sharkey model, were used to fit the A-Ci curves of 8 typical plants in karst and non-karst regions of southwest China. Then the photosynthetic parameters and their response to main environmental factors were analyzed. The results showed that Ethier & Livingston model was better than the other two models in fitting A-Ci curve of 8 typical plants, with determination coefficient (R2) from 0.98 to 0.99 (P<0.01). The photosynthetic parameters (Vcmax and Jmax) fitted by Ethier & Livingston model had no significant differences between karst and non-karst native plants (P>0.05), but both of them were significantly lower than that of Eucalyptus grandis×E. urophylla. Moreover, Vcmax,25 and Jmax,25 of karst and non-karst native plants were significantly correlated with air temperature and soil water content (P<0.05). However, the determination coefficients (R2) between air temperature and Vcmax,25 or Jmax,25 were higher than that between soil water content and Vcmax,25/Jmax,25 for all plants except of Jmax,25 of non-karst native plants. Therefore, these indicated that the influence of air temperature on Vcmax,25 and Jmax,25 of typical plants in this area was stronger than that of soil water content.

    参考文献
    [1] ZHANG X M, SHEN G, CHEN L, et al. Diurnal variation of photo-synthesis and response to light intensity of Koelreuteria bipinnata[J]. Guangdong Agric Sci, 2015, 42(5):109-114. doi:10.3969/j.issn.1004-874X.2015.05.022. 张习敏, 申刚, 陈玲, 等. 复羽叶栾树光合作用日变化及光响应特征[J]. 广东农业科学, 2015, 42(5):109-114. doi:10.3969/j.issn.1004-874X.2015.05.022.
    [2] NI L K, GU D X, HE W, et al. Research advances in plant ecological adaptability in karst area[J]. Chin J Ecol, 2019, 38(7):2210-2217. doi:10.13292/j.1000-4890.201907.033. 倪隆康, 顾大形, 何文, 等. 岩溶区植物生态适应性研究进展[J]. 生态学杂志, 2019, 38(7):2210-2217. doi:10.13292/j.1000-4890.201907.033.
    [3] CHEN W Y, CHEN Z Y, LUO F Y, et al. Comparison between modified exponential model and common models of light-response curve[J]. Chin J Plant Ecol, 2012, 36(12):1277-1285. doi:10.3724/SP.J.1258.2012.01277. 陈卫英, 陈真勇, 罗辅燕, 等. 光响应曲线的指数改进模型与常用模型比较[J]. 植物生态学报, 2012, 36(12):1277-1285. doi:10.3724/SP.J.1258.2012.01277.
    [4] PENG C L, LIN Z F, SUN Z J, et al. Response of rice photosynthesis to CO2 enrichment[J]. ActaPhytophysiol Sin, 1998, 24(3):272-278. 彭长连, 林植芳, 孙梓健, 等. 水稻光合作用对加富CO2的响应[J]. 植物生理学报, 1998, 24(3):272-278.
    [5] FARQUHAR G D, VON CAEMMERER S, BERRY J A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species[J]. Planta, 1980, 149(1):78-90. doi:10.1007/BF00386231.
    [6] ETHIER G J, LIVINGSTON N J. On the need to incorporate sensi-tivity to CO2 transfer conductance into the Farquhar-von Caemmerer-Berry leaf photosynthesis model[J]. Plant Cell Environ, 2004, 27(2):137-153. doi:10.1111/j.1365-3040.2004.01140.x.
    [7] MEDLYN B E, DREYER E, ELLSWORTH D, et al. Temperature response of parameters of a biochemically based model of photo-synthesis:II. A review of experimental data[J]. Plant Cell Environ, 2002, 25(9):1167-1179. doi:10.1046/j.1365-3040.2002.00891.x.
    [8] SHARKEY T D, BERNACCHI C J, FARQUHAR G D, et al. Fitting photosynthetic carbon dioxide response curves for C3 leaves[J]. Plant Cell Environ, 2007, 30(9):1035-1040. doi:10.1111/j.1365-3040.2007. 01710.x.
    [9] TANG X L, CAO Y H, GU L H, et al. Advances in photo-physiological responses of leaves to environmental factors based on the FvCB model[J]. Acta Ecol Sin, 2017, 37(19):6633-6645. doi:10.5846/stxb201607161450. 唐星林, 曹永慧, 顾连宏, 等. 基于FvCB模型的叶片光合生理对环境因子的响应研究进展[J]. 生态学报, 2017, 37(19):6633-6645. doi:10.5846/stxb201607161450.
    [10] YUAN D X. Challenges and opportunities for karst research of our country under the new situation[J]. Carsol Sin, 2009, 28(4):329-331. doi:10.3969/j.issn.1001-4810.2009.04.001. 袁道先. 新形势下我国岩溶研究面临的机遇和挑战[J]. 中国岩溶, 2009, 28(4):329-331. doi:10.3969/j.issn.1001-4810.2009.04.001.
    [11] KOLB T E, MATYSSEK R. Limitations and perspectives about scaling ozone impacts in trees[J]. Environ Pollut, 2001, 115(3):373-393. doi:10.1016/S0269-7491(01)00228-7.
    [12] YE Z P, YU Q. A comparison of response curves of winter wheat photosynthesis to flag leaf intercellular and air CO2 Concentrations[J]. Chin J Ecol, 2009, 28(11):2233-2238. 叶子飘, 于强. 光合作用对胞间和大气CO2响应曲线的比较[J]. 生态学杂志, 2009, 28(11):2233-2238.
    [13] DE PURY D G G, FARQUHAR G D. Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models[J]. Plant Cell Environ, 1997, 20(5):537-557. doi:10.1111/j.1365-3040.1997.00094.x.
    [14] WALKER A P, BECKERMAN A P, GU L H, et al. The relationship of leaf photosynthetic traits-Vcmax and Jmax-to leaf nitrogen, leaf pho-sphorus, and specific leaf area:A meta-analysis and modeling study[J]. Ecol Evol, 2014, 4(16):3218-3235. doi:10.1002/ece3.1173.
    [15] FAN Y Z, ZHONG Z M, ZHANG X Z. Determination of photo-synthetic parameters Vcmax and Jmaxfor a C3 plant (spring hulless barley) at two altitudes on the Tibetan Plateau[J]. Agric For Meteorol, 2011, 151(12):1481-1487. doi:10.1016/j.agrformet.2011.06.004.
    [16] HIKOSAKA K, NIINEMETS Ü, ANTEN N P R. Canopy Photosyn-thesis:From Basics to Applications[M]. Dordrecht:Springer, 2016:3-22.
    [17] ZHU Z H, HAN T, LIU J Q, et al. Biochemically-based model for photosynthetic parameter estimation using Bayesian method and its application in grapes in arid region[J]. Chin J Eco-Agric, 2017, 25(6):876-883. doi:10.13930/j.cnki.cjea.160967. 朱中华, 韩拓, 柳金权, 等. 基于贝叶斯方法的光合作用生化模型参数估计及其在干旱区葡萄上的应用[J]. 中国生态农业学报, 2017, 25(6):876-883. doi:10.13930/j.cnki.cjea.160967.
    [18] SU Y H, ZHU G F, MIAO Z W, et al. Estimation of parameters of a biochemically based model of photosynthesis using a genetic algorithm[J]. Plant Cell Environ, 2009, 32(12):1710-1723. doi:10.1111/j.1365-3040.2009.02036.x.
    [19] WULLSCHLEGER S D. Biochemical limitations to carbon assimi-lation in C3 plants:A retrospective analysis of the A/Ci curves from 109 species[J]. J Exp Bot, 1993, 44(5):907-920. doi:10.1093/jxb/44.5.907.
    [20] SUN G C, EHLERINGER J R. Gas exchange in Schima superba, a sub-tropical monsoonal forest tree[J]. Photosynthetica, 1986, 20:158-163.
    [21] ZHANG J Z, LIN G Z, LIN Z F, et al. Response of photosynthesis to growth light intensity in some south subtropical woody plants[J]. J Trop Subtrop Bot, 2005, 13(5):413-418. doi:10.3969/j.issn.1005-3395.2005.05.009. 张进忠, 林桂珠, 林植芳, 等. 几种南亚热带木本植物光合作用对生长光强的响应[J]. 热带亚热带植物学报, 2005, 13(5):413-418. doi:10.3969/j.issn.1005-3395.2005.05.009.
    [22] TANG R B, FU M C, WANG L, et al. Spatial differences and it's environmental factors of vegetation primary productivity and soil respiration in karst and non-karst areas[J]. Earth Environ, 2020, 48(3):307-317. doi:10.14050/j.cnki.1672-9250.2020.48.038. 唐荣彬, 付梅臣, 王力, 等. 喀斯特岩溶、非岩溶区植被总初级生产力与土壤呼吸的空间差异及其环境因子分析[J]. 地球与环境, 2020, 48(3):307-317. doi:10.14050/j.cnki.1672-9250.2020.48.038.
    [23] KIRSCHBAUM M U F, FARQUHAR G D. Temperature dependence of whole-leaf photosynthesis in Eucalyptus pauciflora Sieb.ex Spreng[J]. Aust J Plant Physiol, 1984, 11(6):519-538. doi:10.1071/pp 9840519.
    [24] DENG Y. Coupling process between vegetation and epikarst water in karst critical zone, southwest typical peak-cluster depression area[D]. Wuhan:China University of Geosciences, 2018. 邓艳. 西南典型峰丛洼地岩溶关键带植被-表层岩溶水的耦合过程[D]. 武汉:中国地质大学, 2018.
    [25] WALCROFT A S, WHITEHEAD D, SILVESTER W B, et al. The response of photosynthetic model parameters to temperature and nitrogen concentration in Pinus radiata D. Don[J]. Plant Cell Environ, 1997, 20(11):1338-1348. doi:10.1046/j.1365-3040.1997.d01-31.x.
    [26] DONG Q Y. Effects of light utilization capacity on seedlings of Eucalyptus urophylla×E. grandis Mixed with native thee species[D]. Guangzhou:South China Agricultural University, 2016. 董奇妤. 尾巨桉与乡土树种苗木混交对光能利用的效应[D]. 广州:华南农业大学, 2016.
    [27] CAI X A, SUN G C, ZHAO P, et al. The effects of soil water content on photosynthesis in leaves of Kmeria septentrionalis seedlings[J]. J Trop Subtrop Bot, 2004, 12(3):207-212. doi:10.3969/j.issn.1005-3395. 2004.03.003. 蔡锡安, 孙谷畴, 赵平, 等. 土壤水分对单性木兰幼苗光合特性的影响[J]. 热带亚热带植物学报, 2004, 12(3):207-212. doi:10.3969/j.issn.1005-3395.2004.03.003.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

倪隆康,何文,黄科朝,顾大形,黄玉清.岩溶与非岩溶区典型植物最适光合模型和光合特征研究[J].热带亚热带植物学报,2021,29(2):187~194

复制
分享
文章指标
  • 点击次数:537
  • 下载次数: 650
  • HTML阅读次数: 382
  • 引用次数: 0
历史
  • 收稿日期:2020-06-22
  • 最后修改日期:2020-08-18
  • 在线发布日期: 2021-03-20
文章二维码