冬季南亚热带森林演替中后期优势树种幼叶光保护策略
作者:
基金项目:

国家自然科学基金项目(31870374,31570398);广东省自然科学基金项目(2017A030313167,2015A030311023)资助


Photoprotection Strategies in Young Leaves of Dominant Species in Mid- and Late-Successional Stages of Low Subtropical Forest in Winter
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [42]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了解演替中期和后期优势树种对冬季不同光强的适应性,对在全光照(100%自然光强)和低光照(30%自然光强)下生长的演替中期优势种木荷(Schima superba)、锥栗(Castanopsis chinensis)和黧蒴(Castanopsis fissa)及演替后期优势种华润楠(Machilus chinensis)、黄果厚壳桂(Cryptocarya coninna)和厚壳桂(Cryptocarya chinensis)的生理生化响应进行了研究。结果表明,与全光照相比,低光照下演替中期优势树种幼叶的非光化学猝灭(NPQ)、类胡萝卜素与叶绿素的比值(Car/Chl)和花色素苷含量下降,细胞质膜渗透率增加;而演替后期优势树种幼叶的花色素苷含量增加、细胞质膜渗透率降低,且受光抑制的程度低(Fv/Fm高)。此外,除总抗氧化能力外,演替中期优势树种幼叶的花色素苷含量、NPQ和Car/Chl均显著低于演替后期优势种。因此,演替后期优势树种可以通过灵活多样的光保护策略来提高对冬季强光环境的适应能力,而演替中期优势种在光保护策略的多样性及光保护能力上均弱于演替后期优势种。

    Abstract:

    In order to understand the mechanism of photoprotection strategies of dominant species at different successional stages under different light environments in winter, the physiological and biochemical responsethree dominant species at mid-successional stage, i.e. Schima superba, Castanopsis chinensis and Castanopsis fissa and three dominant species at late-successional stage, i.e. Machilus chinensis, Cryptocarya coninna, Cryptocarya chinensis grown on full light (100% natural light) and low light (30% natural light) were studied. The results showed that, compared with full light, the non-photochemical quenching (NPQ), ratio of carotenoid to chlorophyll (Car/Chl) and anthocyanin content in young leaves of dominant species at mid-successional stage under low light decreased, and the relative cytoplasmic membrane leakage increased. On the contrary, the anthocyanin content in young leaves of dominant species in the late-successional stage increased, the relative cytoplasmic membrane leakage decreased, and the degree of light inhibition was low (high Fv/Fm). In addition, the anthocyanin content, NPQ and Car/Chl in young leaves of mid-successional species were significantly lower than those of late- successional species except of total antioxidant capacity. So, the dominant species at late-successional stage could improve their adaptability to high light environments in winter through their flexible light protection strategies. However, the diversity of light protection strategies and light protection ability of dominant species at mid- successional stage were weaker than those at late-successional stage.

    参考文献
    [1] ZHANG Q, CHEN Y J, Song L Y, et al. Utilization of lightflecks by seedlings of five dominant tree species of different subtropical forest successional stages under low-light growth conditions[J]. Tree Physiol, 2012, 32(5):545-553. doi:10.1093/treephys/tps043.
    [2] HAMERLYNCK E P, KNAPP A K. Leaf-level responses to light and temperature in two co-occurring Quercus (Fagaceae) species: Implications for tree distribution patterns[J]. For Ecol Manag, 1994, 68(2/3):149-159. doi:10.1016/0378-1127(94)90042-6.
    [3] GRAVEL D, CANHAM C D, BEAUDET M, et al. Shade tolerance, canopy gaps and mechanisms of coexistence of forest trees[J]. Oikos, 2010, 119(3):475-484. doi:10.1111/j.1600-0706.2009.17441.x.
    [4] ROBERT G, MELCHIORRE M, RACCA R, et al. Apoplastic superoxide level in wheat protoplast under photooxidative stress is regulated by chloroplast redox signals:Effects on the antioxidant system[J]. Plant Sci, 2009, 177(3):168-174. doi:10.1016/j.plantsci.2009.05.001.
    [5] GU J F, ZHOU Z X, LI Z K, et al. Photosynthetic properties and potentials for improvement of photosynthesis in pale green leaf rice under high light conditions[J]. Front Plant Sci, 2017, 8:1082. doi:10. 3389/fpls.2017.01082.
    [6] DU Y X, HE C L, ZHANG L H, et al. Physiochemical response of several evergreen trees to low temperature stress in winter in Lushan[J]. Ecol Environ Sci, 2014, 23(6):945-949. doi:10.3969/j.issn.1674-5906.2014.06.006.杜有新, 何春林, 张乐华, 等. 庐山若干常绿树种对冬季低温的生理生化响应 [J]. 生态环境学报, 2014, 23(6):945-949. doi:10.3969/j.issn.1674-5906.2014.06.006.
    [7] VRANOVá E, INZE? D, VAN BREUSEGEM F. Signal transduction during oxidative stress [J]. J Exp Bot, 2002, 53(372):1227-1236. doi:10.1093/jxb/53.372.1227.
    [8] ZHAN J C, HUANG W D, WANG L J. Research of weak light stress physiology in plants [J]. Chin Bull Bot, 2003, 20(1):43-50. doi:10. 3969/j.issn.1674-3466.2003.01.005.战吉宬, 黄卫东, 王利军. 植物弱光逆境生理研究综述 [J]. 植物学通报, 2003, 20(1):43-50. doi:10.3969/j.issn.1674-3466.2003.01.005.
    [9] HOOIJMAIJERS C A M, GOULD K S. Photoprotective pigments in red and green gametophytes of two New Zealand liverworts[J]. New Zeal J Bot, 2007, 45(3):451-461. doi:10.1080/00288250709509728.
    [10] HUGHES N M, SMITH W K. Attenuation of incident light in Galax urceolata (Diapensiaceae):Concerted influence of adaxial and abaxial anthocyanic layers on photoprotection[J]. Amer J Bot, 2007, 94(5):784-790. doi:10.3732/ajb.94.5.784.
    [11] ZHANG T J, CHOW W S, LIU X T, et al. A magic red coat on the surface of young leaves:Anthocyanins distributed in trichome layer protect Castanopsis fissa leaves from photoinhibition[J]. Tree Physiol, 2016, 36(10):1296-1306. doi:10.1093/treephys/tpw080.
    [12] HOCH W A, SINGSAAS E L, MCCOWN B H. Resorption protection:Anthocyanins facilitate nutrient recovery in autumn by shielding leaves from potentially damaging light levels[J]. Plant Physiol, 2003, 133(3):1296-1305. doi:10.1104/pp.103.027631.
    [13] HATIER J H B, CLEARWATER M J, GOULD K S. The functional significance of black-pigmented leaves:Photosynthesis, photoprotection and productivity in Ophiopogon planiscapus ‘Nigrescens’[J]. PLoS ONE, 2013, 8(6):e67850. doi:10.1371/journal.pone.0067850.
    [14] LEE D W, GOULD K S. Why leaves turn red:Pigments called antho-cyanins probably protect leaves from light damage by direct shielding and by scavenging free radicals[J]. Amer Sci, 2002, 90(6):524-531. doi:10.1511/2002.39.794.
    [15] NEILL S O, GOULD K S. Anthocyanins in leaves:Light attenuators or antioxidants?[J]. Funct Plant Biol, 2003, 30(8):865-873. doi:10. 1071/FP03118.
    [16] YU Z C, LIU X T, HUANG X D, et al. Photoprotection of antho-cyanins in young leaves of dominant tree species at mid-and late-successional stages of low subtropical forest in summer[J]. J Trop Subtrop Bot, 2018, 26(4):363-374. doi:10.11926/jtsb.3838.俞正超, 刘晓涛, 黄烜栋, 等. 夏季南亚热带森林演替中后期优势种幼叶花色素苷的光保护作用[J]. 热带亚热带植物学报, 2018, 26(4):363-374. doi:10.11926/jtsb.3838.
    [17] SHEN J, JIANG C Q, YAN Y F, et al. Effect of increased UV-B radiation on carotenoid accumulation and total antioxidant capacity in tobacco (Nicotiana tabacum L.) leaves[J]. Genet Mol Res, 2017, 16(1):gmr16018438. doi:10.4238/gmr16018438.
    [18] NISHINO A, YASUI H, MAOKA T. Reaction and scavenging mecha-nism of β-carotene and zeaxanthin with reactive oxygen species[J]. J Oleo Sci, 2017, 66(1):77-84. doi:10.5650/jos.ess16107.
    [19] PANTELIDIS G E, VASILAKAKIS M, MANGANARIS G A, et al. Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries[J]. Food Chem, 2007, 102(3):777-783. doi:10.1016/j.food chem.2006.06.021.
    [20] WU Z C, LIU S, ZHAO J, et al. Comparative responses to silicon and selenium in relation to antioxidant enzyme system and the glutathione-ascorbate cycle in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis) under cadmium stress[J]. Environ Exp Bot, 2017, 133:1-11. doi:10.1016/j.envexpbot.2016.09.005.
    [21] HU W H, SONG X S, SHI K, et al. Changes in electron transport, superoxide dismutase and ascorbate peroxidase isoenzymes in chloro-plasts and mitochondria of cucumber leaves as influenced by chilling[J]. Photosynthetica, 2008, 46(4):581-588. doi:10.1007/s11099-008-0098-5.
    [22] GUO Y H, CAO K F. Effect of night chilling on photosynthesis of two coffee species grown under different irradiances[J]. J Hort Sci Bio-technol, 2004, 79(5):713-716. doi:10.1080/14620316.2004.11511831.
    [23] HUANG W, YANG Y J, ZHANG S B. Specific roles of cyclic electron flow around photosystem I in photosynthetic regulation in immature and mature leaves[J]. J Plant Physiol, 2017, 209:76-83. doi:10.1016/j.jplph.2016.11.013.
    [24] NAMA S, MADIREDDI S K, YADAV R M, et al. Non-photochemical quenching-dependent acclimation and thylakoid organization of Chlamydomonas reinhardtii to high light stress[J]. Photosynth Res, 2019, 139(1):387-400. doi:10.1007/s11120-018-0551-7.
    [25] ZHU H, ZHANG T J, ZHANG P, et al. Pigment patterns and photo-protection of anthocyanins in the young leaves of four dominant sub-tropical forest tree species in two successional stages under contrasting light conditions [J]. Tree Physiol, 2016, 36(9): 1092–1104. doi: 10. 1093/treephys/tpw047.
    [26] PENG C L, CHEN S W, LIN Z F, et al. Detection of antioxidative capacity in plants by scavenging organic free radical DPPH [J]. Prog Biochem Biophys, 2000, 27(6): 658–661. 彭长连, 陈少薇, 林植芳, 等. 用清除有机自由基DPPH法评价植物抗氧化能力 [J]. 生物化学与生物物理进展, 2000, 27(6): 658–661.
    [27] WELLBURN A R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophoto- meters of different resolution [J]. J Plant Physiol, 1994, 144(3): 307–313. doi: 10.1016/S0176-1617(11)81192-2.
    [28] SHI J H, HUANG Z L, ZHOU X Y, et al. Vertical pattern of plant community and biodiversity on the Dinghu Mountain[J]. Chin J Ecol, 2005, 24(10):1143-1146. doi:10.3321/j.issn:1000-4890.2005.10.006.史军辉, 黄忠良, 周小勇, 等. 鼎湖山森林群落多样性垂直分布格局的研究[J]. 生态学杂志, 2005, 24(10):1143-1146. doi:10.3321/j. issn:1000-4890.2005.10.006.
    [29] CHEN Z, GALLIE D R. Violaxanthin de-epoxidase is rate-limiting for non-photochemical quenching under subsaturating light or during chilling in Arabidopsis[J]. Plant Physiol Biochem, 2012, 58:66-82. doi:10.1016/j.plaphy.2012.06.010.
    [30] VETOSHKINA D V, BORISOVA-MUBARAKSHINA M M, NAYDOV I A, et al. Impact of high light on reactive oxygen species production within photosynthetic biological membranes[J]. J Biol Life Sci, 2015, 6(2):50-60. doi:10.5296/jbls.v6i2.7277.
    [31] DING X T, JIANG Y P, WANG H, et al. Effects of cytokinin on photosynthetic gas exchange, chlorophyll fluorescence parameters, antioxidative system and carbohydrate accumulation in cucumber (Cucumis sativus L.) under low light[J]. Acta Physiol Plant, 2013, 35(5):1427-1438. doi:10.1007/s11738-012-1182-9.
    [32] CHI C Y, DING G H, LIAN Y Q, et al. Effect of low temperature stress on proline content and membrane permeability in three kind cold-season turfgrass[J]. Chin Agric Sci Bull, 2007, 23(1):101-104. doi:10.3969/j.issn.1000-6850.2007.01.024.池春玉, 丁国华, 连永权, 等. 低温胁迫对三种冷季型草坪草脯氨酸含量及膜透性的影响[J]. 中国农学通报, 2007, 23(1):101-104. doi:10.3969/j.issn.1000-6850.2007.01.024.
    [33] PRIETO P, PEÑUELAS J, LLUSIÀ J, et al. Effects of long-term experimental night-time warming and drought on photosynthesis, Fv/Fm and stomatal conductance in the dominant species of a Mediterranean shrubland[J]. Acta Physiol Plant, 2009, 31(4):729-739.
    [34] SHARMA D K, ANDERSEN S B, OTTOSEN C O, et al. Wheat cultivars selected for high Fv/Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter[J]. Physiol Plantarum, 2015, 153(2):284-298.
    [35] ZHANG K M, YU H J, SHI K, et al. Photoprotective roles of antho-cyanins in Begonia semperflorens[J]. Plant Sci, 2010, 179(3):202-208.
    [36] HAJIMAHMOODI M, MOGHADDAM G, RANJBAR A M, et al. Total phenolic, flavonoids, tannin content and antioxidant power of some Iranian pomegranate flower cultivars (Punica granatum L.)[J]. Amer J Plant Sci, 2013, 4(9):1815-1820. doi:10.4236/ajps.2013. 49223.
    [37] ZHANG T J, ZHENG J, YU Z C, et al. Functional characteristics of phenolic compounds accumulated in young leaves of two subtropical forest tree species of different successional stages[J]. Tree Physiol, 2018, 38(10):1486-1501. doi:10.1093/treephys/tpy030.
    [38] JAHNS P, HOLZWARTH A R. The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II[J]. Biochim Biophys Acta, 2012, 1817(1):182-193. doi:10.1016/j.bbabio.2011.04.012.
    [39] ZHANG T J, ZHENG J, YU Z C, et al. Variations in photoprotective potential along gradients of leaf development and plant succession in subtropical forests under contrasting irradiances[J]. Environ Exp Bot, 2018, 154:23-32. doi:10.1016/j.envexpbot.2017.07.016.
    [40] ZHANG Q, ZHANG T J, CHOW W S, et al. Photosynthetic charac-teristics and light energy conversions under different light environ-ments in five tree species occupying dominant status at different stages of subtropical forest succession[J]. Funct Plant Biol, 2015, 42(7):609–619. doi: 10.1071/FP14355.
    [41] CHEN Z, GALLIE D R. Ethylene regulates energy-dependent non-photochemical quenching in Arabidopsis through repression of the xanthophyll cycle[J]. PLoS ONE, 2015, 10(12):e0144209. doi:10. 1371/journal.pone.0144209.
    [42] TOWNSEND A J, WARE M A, RUBAN A V. Dynamic interplay between photodamage and photoprotection in photosystem II[J]. Plant Cell Environ, 2018, 41(5):1098-1112. doi:10.1111/pce.13107.
    引证文献
引用本文

林威,俞正超,罗燕娜,施楚亮,赖宇波,彭长连.冬季南亚热带森林演替中后期优势树种幼叶光保护策略[J].热带亚热带植物学报,2021,29(2):171~179

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-06-13
  • 最后修改日期:2020-09-20
  • 在线发布日期: 2021-03-20
文章二维码