咖啡化学成分及其生物活性研究进展
作者:
基金项目:

国家自然科学基金云南联合基金项目(U1902206);云南省教育厅科学研究基金项目(2020J0241)资助


Advances on Chemical Components and Biological Activities of Coffee
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [71]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    咖啡为茜草科(Rubiaceae)咖啡属(Coffea)植物,位居世界三大饮品之首,具有降低血糖、保护肝脏和神经保护等作用。咖啡化学成分类别较多,包括生物碱、酚酸类、黄酮类、萜类等。咖啡中的化学成分是发挥其生物学功能和形成特色风味的基础,对其化学成分来源和生物活性进行综述,为进一步发展咖啡产业提供依据和理论支撑。

    Abstract:

    Coffee, one of the three top drinks in the world, belongs to Coffea (Rubiaceae), which can reduce blood sugar, protect liver and neuro. The chemical constituents of coffee are rich, including alkaloids, phenolic acid, flavonoid, terpene, etc. The chemical constituents are the basis of biological activities and forming the characteristic flavor of coffee. The main chemical constituents and biological activities of coffee were comprehensively reviewed, which would provide relevant basis and theoretical support for the further development of coffee industry.

    参考文献
    [1] HUANG J X, LI G P, YANG S G. Brief introduction of coffee species and fine varieties[J]. Nongcun Shiyong Jishu, 2009(1):42-43. 黄家雄, 李贵平, 杨世贵. 咖啡种类及优良品种简介[J]. 农村实用技术, 2009(1):42-43.
    [2] LI W R, ZHOU S Z. Development status and prospects of coffee industry in China[J]. Chin J Trop Agric, 2011, 31(10):105-108. doi:10.3969/j.issn.1009-2196.2011.10.025. 李维锐, 周仕峥. 我国咖啡产业发展现状及前景[J]. 热带农业科学, 2011, 31(10):105-108. doi:10.3969/j.issn.1009-2196.2011.10.025.
    [3] LAURENT C, EDDARKAOUI S, DERISBOURG M, et al. Beneficial effects of caffeine in a transgenic model of Alzheimer's disease-like tau pathology[J]. Neurobiol Aging, 2014, 35(9):2079-2090. doi:10.1016/j.neurobiolaging.2014.03.027.
    [4] SINGH S, SINGH K, PATEL S, et al. Nicotine and caffeine-mediated modulation in the expression of toxicant responsive genes and vesi-cular monoamine transporter-2 in 1-methyl 4-phenyl-1,2,3,6-tetra-hydropyridine-induced Parkinson's disease phenotype in mouse[J]. Brain Res, 2008, 1207:193-206. doi:10.1016/j.brainres.2008.02.023.
    [5] ZEITLIN R, PATEL S, BURGESS S, et al. Caffeine induces beneficial changes in PKA signaling and JNK and ERK activities in the striatum and cortex of Alzheimer's transgenic mice[J]. Brain Res, 2011, 1417:127-136. doi:10.1016/j.brainres.2011.08.036.
    [6] ARENDASH G W, REZAI-ZADEH K, CAO C H, et al. Caffeine:Evidence for protection against, and treatment for, Alzheimer's disease by direct suppression of disease pathogenesis[J]. Alzheimers Dement, 2007, 3(S3):S166. doi:10.1016/j.jalz.2007.04.355.
    [7] NAKASO K, ITO S, NAKASHIMA K. Caffeine activates the PI3K/Akt pathway and prevents apoptotic cell death in a Parkinson's disease model of SH-SY5Y cells[J]. Neurosci Lett, 2008, 432(2):146-150. doi:10.1016/j.neulet.2007.12.034.
    [8] CHEN X S, LAN X, ROCHE I, et al. Caffeine protects against MPTP-induced blood-brain barrier dysfunction in mouse striatum[J]. J Neurochem, 2008, 107(4):1147-1157. doi:10.1111/j.1471-4159.2008.05697.x.
    [9] SUN L Y, TIAN X, GOU L S, et al. Beneficial synergistic effects of concurrent treatment with theanine and caffeine against cerebral ischemia-reperfusion injury in rats[J]. Can J Physiol Pharmacol, 2013, 91(7):562-569. doi:10.1139/cjpp-2012-0309.
    [10] BOJAR D, SCHELLER L, HAMRI G C E, et al. Caffeine-inducible gene switches controlling experimental diabetes[J]. Nat Commun, 2018, 9(1):2318. doi:10.1038/s41467-018-04744-1.
    [11] RIEDEL A, HOCHKOGLER C M, LANG R, et al. N-methyl-pyridi-nium, a degradation product of trigonelline upon coffee roasting, stimulates respiratory activity and promotes glucose utilization in HepG2 cells[J]. Food Funct, 2014, 5(3):454-462. doi:10.1039/c3fo 60320b.
    [12] LIU L, DU X H, ZHANG Z, et al. Trigonelline inhibits caspase 3 to protect β cells apoptosis in streptozotocin-induced type 1 diabetic mice[J]. Eur J Pharmacol, 2018, 836:115-121. doi:10.1016/j.ejphar.2018.08.025.
    [13] SHAO X N, CHEN C, MIAO C S, et al. Expression analysis of microRNAs and their target genes during experimental diabetic renal lesions in rats administered with ginsenoside Rb1 and trigonelline[J]. Die Pharm, 2019, 74(8):492-498. doi:10.1691/ph.2019.8903.
    [14] OMIDI-ARDALI H, LORIGOOINI Z, SOLTANI A, et al. Inflam-matory responses bridge comorbid cardiac disorder in experimental model of IBD induced by DSS:Protective effect of the trigonelline[J]. Inflammopharmacology, 2019, 27(6):1265-1273. doi:10.1007/s10787-019-00581-w.
    [15] ZHOU J Y, ZHOU S W. Protection of trigonelline on experimental diabetic peripheral neuropathy[J]. Evid Based Compl Alternat Med, 2012, 2012:164219. doi:10.1155/2012/164219.
    [16] FAHANIK-BABAEI J, BALUCHNEJADMOJARAD T, NIKBAKHT F, et al. Trigonelline protects hippocampus against intracerebral Aβ (1-40) as a model of Alzheimer's disease in the rat:insights into under-lying mechanisms[J]. Metab Brain Dis, 2019, 34(1):191-201. doi:10.1007/s11011-018-0338-8.
    [17] SHARMA L, LONE N A, KNOTT R M, et al. Trigonelline prevents high cholesterol and high fat diet induced hepatic lipid accumulation and lipo-toxicity in C57BL/6J mice, via restoration of hepatic auto-phagy[J]. Food Chem Toxicol, 2018, 121:283-296. doi:10.1016/j. fct.2018.09.011.
    [18] ANWAR S, BHANDARI U, PANDA B P, et al. Trigonelline inhibits intestinal microbial metabolism of choline and its associated cardiova-scular risk[J]. J Pharm Biomed Anal, 2018, 159:100-112. doi:10.1016 j.jpba.2018.06.027.
    [19] PETERMANN J B, BAUMANN T W. Metabolic Relations between methylxanthines and methyluric acids in Coffea L.[J]. Plant Physiol, 1983, 73(4):961-964. doi:10.1104/pp.73.4.961.
    [20] RODRIGUES N P, BRAGAGNOLO N. Identification and quanti-fication of bioactive compounds in coffee brews by HPLC-DAD-MSn[J]. J Food Compos Anal, 2013, 32:105-115. doi:10.1016/j.jfca.2013.09.002.
    [21] CAPORASO N, WHITWORTH M B, GREBBY S, et al. Non-destructive analysis of sucrose, caffeine and trigonelline on single green coffee beans by hyperspectral imaging[J]. Food Res Int, 2018, 106:193-203. doi:10.1016/j.foodres.2017.12.031.
    [22] NISHI, AHAD A, KUMAR P. Hypolipidemic effect of chlorogenic acid in a hypercholesterolemic rat model[J]. Int J Pharm Bio Sci, 2013, 4(1):582-586.
    [23] XU J G, HU Q P, LIU Y. Antioxidant and DNA-protective activities of chlorogenic acid isomers[J]. J Agric Food Chem, 2012, 60(46):11625-11630. doi:10.1021/jf303771s.
    [24] SHI X W, ZHOU N, CHENG J Y, et al. Chlorogenic acid protects PC12 cells against corticosterone-induced neurotoxicity related to inhibition of autophagy and apoptosis[J]. BMC Pharmacol Toxicol, 2019, 20(1):56. doi:10.1186/s40360-019-0336-4.
    [25] SU M M, LIU F, LUO Z, et al. The antibacterial activity and mecha-nism of chlorogenic acid against foodborne pathogen Pseudomonas aeruginosa[J]. Foodborne Pathog Dis, 2019, 16(12):823-830. doi:10.1089/fpd.2019.2678.
    [26] XUE Y W, HUANG F, TANG R X, et al. Chlorogenic acid attenuates cadmium-induced intestinal injury in Sprague-Dawley rats[J]. Food Chem Toxicol, 2019, 133:110751. doi:10.1016/j.fct.2019.110751.
    [27] van DIJK A E, OLTHOF M R, MEEUSE J C, et al. Acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on glucose tolerance[J]. Diabetes Care, 2009, 32(6):1023-1025. doi:10.2337/dc09-0207.
    [28] CHEN X M. A review on coffee leaves:Phytochemicals, bioactivities and applications[J]. Crit Rev Food Sci Nutri, 2019, 59(6):1008-1025. doi:10.1080/10408398.2018.1546667.
    [29] ASAMENEW G, KIM H W, LEE M K, et al. Comprehensive charac-terization of hydroxycinnamoyl derivatives in green and roasted coffee beans:A new group of methyl hydroxycinnamoyl quinate[J]. Food Chem, 2019, X2:100033. doi:10.1016/j.fochx.2019.100033.
    [30] SITTIPOD S, SCHWARTZ E, PARAVISINI L, et al. Identification of flavor modulating compounds that positively impact coffee quality[J]. Food Chem, 2019, 301:125250. doi:10.1016/j.foodchem.2019.125250.
    [31] SHI X W, ZHOU N, CHENG J Y, et al. Chlorogenic acid protects PC12 cells against corticosterone-induced neurotoxicity related to inhibition of autophagy and apoptosis[J]. BMC Pharmacol Toxicol, 2019, 20(1):56. doi:10.1186/s40360-019-0336-4.
    [32] WENZEL U, KUNTZ S, BRENDE M D, et al. Dietary flavone is a potent apoptosis inducer in human colon carcinoma cells[J]. Cancer Res, 2000, 60(14):3823-3831.
    [33] ZENG C Z, LIU Z X, WU Y X, et al. Studies on flavonoids extraction by ultrasonic technology from glycyrrhiza and their bacteriostatic activity[J]. Lishizhen Med Mat Med Res, 2007, 18(10):2402-2403. doi:10.3969/j.issn.1008-0805.2007.10.036. 曾超珍, 刘志祥, 吴耀辉, 等. 超声波提取甘草黄酮及其抑菌活性研究[J]. 时珍国医国药, 2007, 18(10):2402-2403. doi:10.3969/j. issn.1008-0805.2007.10.036.
    [34] RATANAMARNO S, SURBKAR S. Caffeine and catechins in fresh coffee leaf (Coffea arabica) and coffee leaf tea[J]. Maejo Int J Sci Technol, 2017, 11(3):211-218.
    [35] ZHANG Y H, FU X P, LIANG W J, et al. Antioxidant activity and compsition of anthocyanins of crude extracts from Yunnan arabica coffee husk[J]. Food Sci Technol, 2016, 41(5):219-223. doi:10.13684/j.cnki.spkj.2016.05.041. 张云鹤, 付晓萍, 梁文娟, 等. 云南小粒种咖啡果皮粗提物花青素成分及抗氧化活性研究[J]. 食品科技, 2016, 41(5):219-223. doi:10.13684/j.cnki.spkj.2016.05.041.
    [36] SAMUEL C V M, WAGNER L A, TOHGE T, et al. In high-light-acclimated coffee plants the metabolic machinery is adjusted to avoid oxidative stress rather than to benefit from extra light enhancement in photosynthetic yield[J]. PLoS One, 2014, 9(4):e94862. doi:10.1371/journal.pone.0094862.
    [37] PATAY E B, NÉMETH T, NÉMETH T S, et al. Histological and phytochemical studies of Coffea benghalensis B. Heyne ex Schult., compared with Coffea arabica L.[J]. Farmacia, 2016, 64(1):125-130.
    [38] GUNNING Y, DEFERNEZ M, WATSON A D, et al. 16-O-methyl-cafestol is present in ground roast arabica coffees:Implications for authenticity testing[J]. Food Chem, 2018, 248:52-60. doi:10.1016/j. foodchem.2017.12.034.
    [39] WANG X, PENG X R, LU J, et al. Ent-kaurane diterpenoids from the cherries of Coffea arabica[J]. Fitoterapia, 2019, 132:7-11. doi:10.1016/j.fitote.2018.08.023.
    [40] WANG X, MENG Q Q, PENG X R, et al. Identification of new diterpene esters from green Arabica coffee beans, and their platelet aggregation accelerating activities[J]. Food Chem, 2018, 263:251-257. doi:10.1016/j.foodchem.2018.04.081.
    [41] SHU Y, LIU J Q, PENG X R, et al. Characterization of diterpenoid glucosides in roasted puer coffee beans[J]. J Agric Food Chem, 2014, 62(12):2631-2637. doi:doi.org/10.1021/jf500788t.
    [42] CHU R, WAN L S, PENG X R, et al. Characterization of new ent-kaurane diterpenoids of Yunnan Arabica coffee beans[J]. Nat Prod Bioprospect, 2014, 6(4):217-223. doi:10.1007/s13659-016-0099-1.
    [43] WANG X, PENG X R, LU J, et al. New dammarane triterpenoids, caffruones A-D, from the cherries of Coffea arabica[J]. Nat Prod Bioprospect, 2018, 8(6):413-418. doi:10.1007/s13659-018-0181-y.
    [44] IWAMOTO H, IZUMI K, NATSAGDORJ A, et al. Coffee diterpenes kahweol acetate and cafestol synergistically inhibit the proliferation and migration of prostate cancer cells[J]. Prostate, 2019, 79(5):468-479. doi:10.1002/pros.23753.
    [45] OH S H, HWANG Y P, CHOI J H, et al. Kahweol inhibits proliferation and induces apoptosis by suppressing fatty acid synthase in HER2-overexpressing cancer cells[J]. Food Chem Toxicol, 2018, 121:326-335. doi:10.1016/j.fct.2018.09.008.
    [46] LIMA C S, SPINDOLA D G, BECHARA A, et al. Cafestol, a diterpene molecule found in coffee, induces leukemia cell death[J]. Biomed Pharmacother, 2017, 92:1045-1054. doi:10.1016/j.biopha.2017.05.109.
    [47] MELLBYE F B, JEPPESEN P B, HERMANSEN K, et al. Cafestol, a bioactive substance in coffee, stimulates insulin secretion and increases glucose uptake in muscle cells:Studies in vitro[J]. J Nat Prod, 2015, 78(10):2447-2451. doi:10.1021/acs.jnatprod.5b00481.
    [48] SEO H Y, KIM M K, LEE S H, et al. Kahweol ameliorates the liver inflammation through the inhibition of NF-κB and STAT3 activation in primary kupffer cells and primary hepatocytes[J]. Nutrients, 2018, 10(7):863. doi:10.3390/nu10070863.
    [49] LANG R, FROMME T, BEUSCH A, et al. 2-O-β-d-Glucopyranosyl-carboxyatractyligenin from Coffea L. inhibits adenine nucleotide translocase in isolated mitochondria but is quantitatively degraded during coffee roasting[J]. Phytochemistry, 2013, 93:124-135. doi:10.1016/j.phytochem.2013.03.022.
    [50] SPEER K, HRUSCHKA A, KURZROCK T, et al. Diterpenes in coffee[M]//PARLIAMENT T H, HO C T, SCHIEBERLE P. Caffeinated Beverages, Health Benefits, Physiological Effects, and Chemistry. Washington, DC:American Chemical Society, 2000:241-251.
    [51] LANG R, FROMME T, BEUSCH A, et al. Raw coffee based dietary supplements contain carboxyatractyligenin derivatives inhibiting mito-chondrial adenine-nucleotide-translocase[J]. Food Chem Toxicol, 2014, 70:198-204. doi:10.1016/j.fct.2014.05.017.
    [52] LAM L K T, SPARNINS V L, WATTENBERG L W. Isolation and identification of kahweol palmitate and cafestol palmitate as active constituents of green coffee beans that enhance glutathione S-trans-ferase activity in the mouse[J]. Cancer Res, 1982, 42(4):1193-1198.
    [53] ADANE T G, BYUNG S C. Coffee Flavor[M]//Encyclopedia of Food Chemistry. Amsterdam:Elsevier, 2019:48-53.
    [54] ZENG F K, OU S Y. Coffee Flavor Chemistry[M]. Guangzhou:Jinan University Press, 2014:1-128. 曾凡逵, 欧仕益. 咖啡风味化学[M]. 广州:暨南大学出版社, 2014:1-128.
    [55] CHEN Y P, LIANG Z Y, LIN Y Q, et al. Preliminary analysis of odor composition in coffee oil from coffee grounds[J]. Food Sci, 2004, 25(11):230-232. doi:10.3321/j.issn:1002-6630.2004.11.058. 陈祎平, 梁振益, 林尤全, 等. 咖啡油香气成分的初步分析[J]. 食品科学, 2004, 25(11):230-232. doi:10.3321/j.issn:1002-6630.2004.11.058.
    [56] ZHAN J F, LU S M, QU G F, et al. Analysis on volatile and semi-volatie components of Laos's coffee[J]. Food Res Dev, 2008, 29(2):125-129. doi:10.3969/j.issn.1005-6521.2008.02.041. 詹家芬, 陆舍铭, 曲国福, 等. 老挝咖啡的挥发和半挥发性成分提取分析[J]. 食品研究与开发, 2008, 29(2):125-129. doi:10.3969/j. issn.1005-6521.2008.02.041.
    [57] HAFSAH H, IRIAWATI I, SYAMSUDIN T S. Dataset of volatile compounds from flowers and secondary metabolites from the skin pulp, green beans, and peaberry green beans of robusta coffee[J]. Data Brief, 2020, 29:105219. doi:10.1016/j.dib.2020.105219.
    [58] SHU Y. Studies on the chemical constituents and bioactivity of roasted coffee beans of Coffea arabica growing in Yunnan[D]. Hefei:Hefei University of Technology, 2014. 疏义. 云南小粒咖啡熟豆化学成分和生物活性研究[D]. 合肥:合肥工业大学, 2014.
    [59] QIU M H, ZHANG Z R, LI Z R, et al. Review of research on the chemical constituents and bioactivities of coffee[J]. Plant Sci J, 2014, 32(5):540-550. doi:10.11913/PSJ.2095-0837.2014.50540. 邱明华, 张枝润, 李忠荣, 等. 咖啡化学成分与健康[J]. 植物科学学报, 2014, 32(5):540-550. doi:10.11913/PSJ.2095-0837.2014.50540.
    [60] YASHIN A, YASHIN Y, WANG J Y, et al. Antioxidant and antiradical activity of coffee[J]. Antioxidants, 2013, 2(4):230-245. doi:10.3390/antiox2040230.
    [61] DUANGJAI A, NUENGCHAMNONG N, SUPHROM N, et al. Potential of coffee fruit extract and quinic acid on adipogenesis and lipolysis in 3T3-L1 adipocytes[J]. Kobe J Med Sci, 2018, 64(3):E84-E92.
    [62] ONTAWONG A, DUANGJAI A, MUANPRASAT C, et al. Lipid-lowering effects of Coffea arabica pulp aqueous extract in caco-2 cells and hypercholesterolemic rats[J]. Phytomedicine, 2019, 52:187-197. doi:10.1016/j.phymed.2018.06.021.
    [63] MARTINA S J, GOVINDAN P A P, WAHYUNI A S, et al. The difference in effect of Arabica coffee Gayo beans and leaf (Coffea arabica Gayo) extract on decreasing blood Sugar levels in healthy mice[J]. Open Access Maced J Med Sci, 2019, 7(20):3363-3365. doi:10.3889/oamjms.2019.423.
    [64] MELLBYE F B, JEPPESEN P B, SHOKOUH P, et al. Cafestol, a bioactive substance in coffee, has antidiabetic properties in KKAy mice[J]. J Nat Prod, 2017, 80(8):2353-2359. doi:10.1021/acs.jnatprod.7b00395.
    [65] ISHIDA K, YAMAMOTO M, MISAWA K, et al. Coffee polyphenols prevent cognitive dysfunction and suppress amyloid β plaques in APP/PS2 transgenic mouse[J]. Neurosci Res, 2020, 154:35-44. doi:10.1016/j.neures.2019.05.001
    [66] CHO B H, CHOI S M, KIM B C. Gender-dependent effect of coffee consumption on tremor severity in de novo Parkinson's disease[J]. BMC Neurol, 2019, 19(1):194. doi:10.1186/s12883-019-1427-y.
    [67] FU X P, ZHANG Y H, GU D H, et al. Effect on anti-oxidative injuries of human umbilical vein endothelial cell of crude extracts from Yunnan arabica coffee husk[J]. Food Sci Technol, 2016, 41(12):183-188. doi:10.13684/j.cnki.spkj.2016.12.037. 付晓萍, 张云鹤, 谷大海, 等. 云南小粒种咖啡果皮粗提取物对人脐静脉内皮细胞抗氧化损伤的研究[J]. 食品科技, 2016, 41(12):183-188. doi:10.13684/j.cnki.spkj.2016.12.037.
    [68] El-GARAWANI I M, EL-NABI S H, EL-SHAFEY S, et al. Coffea arabica bean extracts and vitamin C:A novel combination unleashes MCF-7 cell death[J]. Curr Pharm Biotechnol, 2020, 21(1):23-26. doi:10.2174/1389201020666190822161337.
    [69] PERGOLIZZI S, D'ANGELO V, ARAGONA M, et al. Evaluation of antioxidant and anti-inflammatory activity of green coffee beans methanolic extract in rat skin[J]. Nat Prod Res, 2020, 34(11):1535-1541. doi:10.1080/14786419.2018.1523161.
    [70] WILTBERGER G, WU Y, LANGE U, et al. Protective effects of coffee consumption following liver transplantation for hepatocellular carci-noma in cirrhosis[J]. Aliment Pharmacol Ther, 2019, 49(6):779-788. doi:10.1111/apt.15089.
    [71] VITAGLIONE P, MAZZONE G, LEMBO V, et al. Coffee prevents fatty liver disease induced by a high-fat diet by modulating pathways of the gut-liver axis[J]. J Nutri Sci, 2019, 8:e15. doi:10.1017/jns. 2019.10.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

沈晓静,字成庭,辉绍良,杨俊滔,王青,曹梦婷,范江平.咖啡化学成分及其生物活性研究进展[J].热带亚热带植物学报,2021,29(1):112~122

复制
分享
文章指标
  • 点击次数:913
  • 下载次数: 1548
  • HTML阅读次数: 584
  • 引用次数: 0
历史
  • 收稿日期:2020-05-13
  • 最后修改日期:2020-07-01
  • 在线发布日期: 2021-01-19
文章二维码