鼎湖山锥栗木质部形成及其对气候的响应
作者:
基金项目:

科技基础条件建设领域基金项目(2019B121202007);国家自然科学基金项目(31570584)资助


Xylem Formation and Response to Climate of Castanea henryi in Dinghushan Mountain
Author:
  • WANG Jie

    WANG Jie

    Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems;Guangdong Provincial Key Laboratory of Applied Botany;South China Botanical Garden;Chinese Academy of Sciences, Guangzhou 510650, China;Center for Plant Ecology, Core Botanical Garden;Chinese Academy of Sciences, Guangzhou 510650, China;University of Chinese Academy of Sciences, Beijing 100049, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YU Bi-yun

    YU Bi-yun

    Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems;Guangdong Provincial Key Laboratory of Applied Botany;South China Botanical Garden;Chinese Academy of Sciences, Guangzhou 510650, China;Center for Plant Ecology, Core Botanical Garden;Chinese Academy of Sciences, Guangzhou 510650, China;University of Chinese Academy of Sciences, Beijing 100049, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • HUANG Jian-guo

    HUANG Jian-guo

    Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems;Guangdong Provincial Key Laboratory of Applied Botany;South China Botanical Garden;Chinese Academy of Sciences, Guangzhou 510650, China;Center for Plant Ecology, Core Botanical Garden;Chinese Academy of Sciences, Guangzhou 510650, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了解鼎湖山锥栗(Castanea henryi)木质部的年内生长动态及其对气候因子的响应,利用微树芯采样技术对锥栗木质部进行连续监测,采用广义可加模型拟合生长过程,并利用混合效应模型分析木质部形成与气候因子的关系。结果表明,鼎湖山锥栗木质部在2015年几乎保持全年生长,呈现显著的季节性差异。在doy200(200 days of year)之前木质部快速生长(生长季前期),doy300之后(生长季后期)生长速率出现下降趋势。生长季前期的木质部生长速率与温度、光合有效辐射存在显著正相关关系,生长季后期木质部生长速率与气候因子之间的相关关系并不显著。这说明中国南亚热带阔叶树种锥栗木质部形成及其调节机制具有季节性差异,反映了木质部形成对环境的适应性。

    Abstract:

    Xylem growth of trees plays an important role in slowing global warming. In order to understand the intra-annual xylem growth dynamics of subtropical Castanea henryi and its response to climate in Dinghushan mountain in south China, the xylem of C. henryi was continuously monitored by microcore sampling technology, the xylem growth in 2015 was fitted by generalized additives models, and the relationship between the xylem growth rate and climate factors was analyzed by using mixed-effect models. The results showed that xylem growth of C. henryi in Dinghushan Mountain kept almost whole year of 2015, and showed significant seasonal differences. The xylem grew rapidly before 200 days of 2015 (early growing season), and showed a down trend in growth rate after 300 days of 2015 (late growing season). The xylem growth rate during early growing season was positively correlated with temperature and photosynthetically active radiation, but that between xylem growth rate and climate factors during late growing season was not significant. So, it was reflected that there were seasonal differences in xylem formation and its regulating mechanism of south subtropical broad-leaved tree C. henryi of China, showing the adaptability of xylem formation to the environment. These could provide data support for deeply understanding and predicting of trees growth in subtropical forest ecosystem under the background of climate change.

    参考文献
    [1] BONAN G B. Forests and climate change:Forcings, feedbacks, and the climate benefits of forests[J]. Science, 2008, 320(5882):1444-1449. doi:10.1126/science.1155121.
    [2] PIAO S L, NAN H J, HUNTINGFORD C, et al. Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity[J]. Nat Commun, 2014, 5:5018. doi:10. 1038/ncomms6018.
    [3] AITKEN S N, YEAMAN S, HOLLIDAY J A, et al. Adaptation, migration or extirpation:Climate change outcomes for tree populations[J]. Evol Appl, 2008, 1(1):95-111. doi:10.1111/j.1752-4571.2007. 00013.x.
    [4] ROSSI S, ANFODILLO T, ČUFAR K, et al. Pattern of xylem phenology in conifers of cold ecosystems at the northern hemisphere[J]. Glob Change Biol, 2016, 22(11):3804-3813. doi:10.1111/gcb.13317.
    [5] VAGANOV E A, HUGHES M K, KIRDYANOV A V, et al. Influence of snowfall and melt timing on tree growth in subarctic Eurasia[J]. Nature, 1999, 400(6740):149-151. doi:10.1038/22087.
    [6] BORCHERT R. Climatic periodicity, phenology, and cambium activity in tropical dry forest trees[J]. IAWA J, 1999, 20(3):239-247. doi:10. 1163/22941932-90000687.
    [7] DESLAURIERS A, MORIN H, BEGIN Y. Cellular phenology of annual ring formation of Abies balsamea in the Quebec boreal forest (Canada)[J]. Can J For Res, 2003, 33(2):190-200. doi:10.1139/x02-178.
    [8] ROSSI S, MORIN H, DESLAURIERS A, et al. Predicting xylem phenology in black spruce under climate warming[J]. Glob Change Biol, 2011, 17(1):614-625. doi:10.1111/j.1365-2486.2010.02191.x.
    [9] HUANG J G, DESLAURIERS A, ROSSI S. Xylem formation can be modeled statistically as a function of primary growth and cambium activity[J]. New Phytol, 2014, 203(3):831-841. doi:10.1111/nph.12859.
    [10] GRIČAR J, ZUPANČIČ M, ČUFAR K, et al. Effect of local heating and cooling on cambial activity and cell differentiation in the stem of Norway spruce (Picea abies)[J]. Ann Bot, 2006, 97(6):943-951. doi:10.1093/aob/mcl050.
    [11] KEENAN R J, REAMS G A, ACHARD F, et al. Dynamics of global forest area:Results from the FAO Global Forest Resources Assessment 2015[J]. For Ecol Manage, 2015, 352:9-20. doi:10.1016/j.foreco. 2015.06.014.
    [12] LI Y Y, ZHOU G Y, HUANG W J, et al. Potential effects of warming on soil respiration and carbon sequestration in a subtropical forest[J]. Plant Soil, 2016, 409(1/2):247-257. doi:10.1007/s11104-016-2966-2.
    [13] HOU Y N, WU H L. Using nonlinear regression method to develop allometric equations for aboveground biomass estimate of three ever-green broadleaved tree species in subtropical China[J]. J CS Univ For Technol, 2016, 36(12):98-101, 107. doi:10.14067/j.cnki.1673-923x. 2016.12.017. 侯燕南, 吴惠俐. 非线性回归方法建立亚热带常绿阔叶树种地上生物量相对生长方程[J]. 中南林业科技大学学报, 2016, 36(12):98-101,107. doi:10.14067/j.cnki.1673-923x.2016.12.017.
    [14] JIA H Y, NONG R H. Big tree transplant technology of Manglietia glauca[J]. Guangxi For Sci, 2006, 35(1):34-35. doi:10.3969/j.issn. 1006-1126.2006.01.010. 贾宏炎, 农瑞红. 灰木莲大树移植技术[J]. 广西林业科学, 2006, 35(1):34-35. doi:10.3969/j.issn.1006-1126.2006.01.010.
    [15] LIU Y J, PENG X B, YAO L W, et al. Species diversity under agro-forestry ecosystem of Castanea henryi stand and chinese herbal[J]. J Zhejiang For Sci Technol, 2018, 38(5):81-86. doi:10.3969/j.issn. 1001-3776.2018.05.014. 刘跃钧, 彭小博, 姚理武, 等. 不同林药复合经营模式对锥栗林下物种多样性的影响[J]. 浙江林业科技, 2018, 38(5):81-86. doi:10. 3969/j.issn.1001-3776.2018.05.014.
    [16] HUANG D W, ZHANG D Q, ZHOU G Y, et al. Characteristics of dominant tree species stem sap flow and their relationships with environmental factors in a mixed conifer-broadleaf forest in Dinghu-shan, Guangdong Province of south China[J]. Chin J Appl Ecol, 2012, 23(5):1159-1166. doi:10.13287/j.1001-9332.2012.0191. 黄德卫, 张德强, 周国逸, 等. 鼎湖山针阔叶混交林优势种树干液流特征及其与环境因子的关系[J]. 应用生态学报, 2012, 23(5):1159-1166. doi:10.13287/j.1001-9332.2012.0191.
    [17] LIU Y, ZHOU G Y, CHU G W, et al. Seasonal dynamics of soil acidity and nutrient contents under coniferous and broad-leaved mixed forest at Dinghushan[J]. Ecol Environ, 2005, 14(1):81-85. doi:10.3969/j. issn.1674-5906.2005.01.017. 刘艳, 周国逸, 褚国伟, 等. 鼎湖山针阔叶混交林土壤酸度与土壤养分的季节动态[J]. 生态环境, 2005, 14(1):81-85. doi:10.3969/j. issn.1674-5906.2005.01.017.
    [18] ROSSI S, ANFODILLO T, MENARDI R. Trephor:A new tool for sampling microcores from tree stems[J]. IAWA J, 2006, 27(1):89-97. doi:10.1163/22941932-90000139.
    [19] ROSSI S, DESLAURIERS A, ANFODILLO T, et al. Age-dependent xylogenesis in timberline conifers[J]. New Phytol, 2008, 177(1):199-208. doi:10.1111/j.1469-8137.2007.02235.x.
    [20] WODZICKI T J. Mechanism of xylem differentiation in Pinus silvestris L.[J]. J Exp Bot, 1971, 22(72):670-687. doi:10.1093/jxb/22.3.670.
    [21] ROSSI S, GIRARD M J, MORIN H. Lengthening of the duration of xylogenesis engenders disproportionate increases in xylem production[J]. Glob Change Biol, 2014, 20(7):2261-2271. doi:10.1111/gcb.12470.
    [22] ZHANG J Z, GOU X H, PEDERSON N, et al. Cambial phenology in Juniperus przewalskii along different altitudinal gradients in a cold and arid region[J]. Tree Physiol, 2018, 38(6):840-852. doi:10.1093/tree phys/tpx160.
    [23] PLOMION C, LEPROVOST G, STOKES A. Wood formation in trees[J]. Plant Physiol, 2001, 127(4):1513-1523. doi:10.1104/pp.010816.
    [24] GUO X L, YU B Y, ZHANG S K, et al. Research progresses on xylem formation dynamics and its regulation mechanism [J]. J Trop Subtrop Bot, 2019, 27(5): 541–547. doi: 10.11926/jtsb.4101. 郭霞丽, 余碧云, 张邵康, 等. 树木木质部生长动态及其调节机制研究进展 [J]. 热带亚热带植物学报, 2019, 27(5): 541–547. doi: 10. 11926/jtsb.4101.
    [25] CHENG R M, LIU Z B, FENG X H, et al. Advances in research on the effect of climatic change on xylem growth of trees [J]. Sci Silv Sin, 2015, 51(6): 147–154. doi: 10.11707/j.1001-7488.20150618. 程瑞梅, 刘泽彬, 封晓辉, 等. 气候变化对树木木质部生长影响的研究进展 [J]. 林业科学, 2015, 51(6): 147–154. doi: 10.11707/j.1001- 7488.20150618.
    [26] LUO T X, LIU X S, ZHANG L, et al. Summer solstice marks a seasonal shift in temperature sensitivity of stem growth and nitrogen- use efficiency in cold-limited forests [J]. Agric For Meteorol, 2018, 248: 469–478. doi: 10.1016/j.agrformet.2017.10.029.
    [27] VIEIRA J, CAMPELO F, ROSSI S, et al. Adjustment capacity of maritime pine cambial activity in drought-prone environments [J]. PLoS One, 2015, 10(5): e0126223. doi: 10.1371/journal.pone.0126223.
    [28] GRI?AR J, ZUPAN?I? M, ?UFAR K, et al. Regular cambial activity and xylem and phloem formation in locally heated and cooled stem portions of Norway spruce [J]. Wood Sci Technol, 2007, 41(6): 463– 475. doi: 10.1007/s00226-006-0109-2.
    [29] WANG L L, SHAO X M, HUANG L, et al. Tree-ring characteristics of Larix gmelinii and Pinus sylvestris var. mongolica and their response to climate in Mohe, China[J]. Acta Phytoecol Sin, 2005, 29(3):380-385. doi:10.17521/cjpe.2005.0050. 王丽丽, 邵雪梅, 黄磊, 等. 黑龙江漠河兴安落叶松与樟子松树轮生长特性及其对气候的响应 [J]. 植物生态学报, 2005, 29(3):380-385. doi:10.17521/cjpe.2005.0050.
    [30] MICHELOT A, SIMARD S, RATHGEBER C, et al. Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics[J]. Tree Physiol, 2012, 32(8):1033-1045. doi:10.1093/treephys/tps052.
    [31] HUANG J G, GUO X L, ROSSI S, et al. Intra-annual wood formation of subtropical Chinese red pine shows better growth in dry season than wet season [J]. Tree Physiol, 2018, 38(8): 1225–1236. doi: 10.1093/treephys/tpy046.
    [32] DESLAURIERS A, HUANG J G, BALDUCCI L, et al. The contri- bution of carbon and water in modulating wood formation in black spruce saplings [J]. Plant Physiol, 2016, 170(4): 2072–2084. doi: 10.1104/pp.15.01525.
    [33] BARBAROUX C, BRéDA N. Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees [J]. Tree Physiol, 2002, 22(17): 1201–1210. doi: 10.1093/treephys/22.17.1201.
    [34] K?RNER C. Plant CO2 responses: An issue of definition, time and resource supply [J]. New Phytol, 2006, 172(3): 393–411. doi: 10.1111/j. 1469-8137.2006.01886.x.
    [35] HYV?NEN R, ?GREN G I, LINDER S, et al. The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosys- tems: A literature review [J]. New Phytol, 2007, 173(3): 463–480. doi: 10.1111/j.1469-8137.2007.01967.x.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王婕,余碧云,黄建国.鼎湖山锥栗木质部形成及其对气候的响应[J].热带亚热带植物学报,2020,28(5):445~454

复制
分享
文章指标
  • 点击次数:813
  • 下载次数: 664
  • HTML阅读次数: 864
  • 引用次数: 0
历史
  • 收稿日期:2020-02-13
  • 最后修改日期:2020-04-22
  • 在线发布日期: 2020-09-18
文章二维码