元江干热河谷主要环境因子(气温和降水)变化规律及蕨类植物的分布响应
作者:
基金项目:

广东省教育厅特色创新类项目(2019KTSCX071)资助


Variation of Major Environmental Factors (Temperature and Precipitation) in Yuanjiang Dry-hot Valley and the Response of Pteridophytes
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [34]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了解蕨类植物多样性及种群分布对环境因子的响应,建立元江干热河谷不同海拔气温和降水的分布模式,对蕨类植物在元江干热河谷内的自然分布进行了研究。结果表明,元江干热河谷从低海拔到高海拔,气温逐渐下降,但降水量却逐渐增加;河谷内蕨类植物多样性及种群分布呈现差异化;干热河谷内蕨类分布受气温影响不大,但与生境水分条件密切相关。元江干热河谷水热条件分布不均,生态环境破碎,气温和降水分布不均,差异化显著,促进了小生境发育。蕨类植物可以指示生态环境的完整性和连续性,某些种群可以指示和监测环境因子尤其是水因子的变化。

    Abstract:

    Dry-hot valley is featured with high temperature, rapid evaporation, and poor vegetation. It is a typical representative of arid ecosystems. In order to understand the response of pteridophytes diversity and population distribution to environmental factors, the distribution patterns of temperature and precipitation at different elevations in Yuanjiang dry-hot valley were established, and the distribution of pteridophytes in dry-hot valley was studied. The results showed that the temperature in Yuanjiang dry-hot valley declined along altitude, whereas precipitation increased. The diversity and population distribution of pteridophytes in Yuanjiang dry-hot valley were strongly differentiated. The distribution of pteridophytes are not associated to temperature but closely related to water supply. Conclusively, the habitat in Yuanjiang dry-hot valley was fragmented due to heterogeneous environmental factors, which accelerates patchy vegetation. Pteridophytes were a certain kind indicator of integrative and continuous living circumstance, while some species could be potential environmental monitors especially for water condition.

    参考文献
    [1] GARNIER A, LESPEZ L. Fluvial system dynamics of Sudano-Sahelian zone during the Late Holocene:The Yamé River (Dogon Country, Mali)[J]. Geomorphology, 2019, 340:32-52. doi:10.1016/j. geomorph.2019.04.018.
    [2] JINA J, WANG Q, WANGA J L, et al. Tracing water and energy fluxes and reflectance in an arid ecosystem using the integrated model SCOPE[J]. J Environ Manage, 2019, 231:1082-1090. doi:10.1016/j. jenvman.2018.10.090.
    [3] WANG X F, JI W J, ZHANG M S, et al. Comparative characteristics of heat resources in the dry-hot valleys in Yunnan Province in recent 53 years[J]. Resour Environ Yangtze Basin, 2015, 24(S1):92-97. doi:10.11870/cjlyzyyhj2015Z10013. 王学锋, 吉文娟, 张茂松, 等. 近53年来云南干热河谷热量资源变化的比较性特征[J]. 长江流域资源与环境, 2015, 24(S1):92-97. doi:10.11870/cjlyzyyhj2015Z10013.
    [4] SHEN R, ZHANG J L, HE B, et al. The structure characteristic and analysis on similarity of grassland community in dry-hot valley of Yuanjiang River[J]. Ecol Environ, 2010, 19(12):2821-2825. doi:10.3969/j.issn.1674-5906.2010.12.009. 沈蕊, 张建利, 何彪, 等. 元江流域干热河谷草地植物群落结构特征与相似性分析[J]. 生态环境学报, 2010, 19(12):2821-2825. doi:10.3969/j.issn.1674-5906.2010.12.009.
    [5] YANG R, ZHANG B R, WANG L L, et al. The response of plant functional traits' group to gradients of altitude in dry-hot valley of Yuan-Mou[J]. Ecol Environ, 2015, 24(1):49-56. doi:10.16258/j.cnki. 1674-5906.2015.01.008. 杨锐, 张博睿, 王玲玲, 等. 元谋干热河谷植物功能性状组合的海拔梯度响应[J]. 生态环境学报, 2015, 24(1):49-56. doi:10.16258/j. cnki.1674-5906.2015.01.008.
    [6] LIU F Y, ZHANG Z X, WANG X Q, et al. Seed dispersion and seed bank characteristics of Terminalia franchetii in dry-hot valley of Jinsha River[J]. J Trop Subtrop Bot, 2012, 20(4):333-340. doi:10.3969/j. issn.1005-3395.2012.04.003. 刘方炎, 张志翔, 王小庆, 等. 金沙江干热河谷滇榄仁种子扩散与种子库特征研究[J]. 热带亚热带植物学报, 2012, 20(4):333-340. doi:10.3969/j.issn.1005-3395.2012.04.003.
    [7] YANG J D, ZHANG Z M, SHEN Z H, et al. Review of research on the vegetation and environment of dry-hot valleys in Yunnan[J]. Biodiv Sci, 2016, 24(4):462-474. doi:10.17520/biods.2015251. 杨济达, 张志明, 沈泽昊, 等. 云南干热河谷植被与环境研究进展[J]. 生物多样性, 2016, 24(4):462-474. doi:10.17520/biods.2015251.
    [8] GU Z J, DUAN X W, SHI Y D, et al. Spatiotemporal variation in vegetation coverage and its response to climatic factors in the Red River Basin, China[J]. Ecol Indic, 2018, 93:54-64. doi:10.1016/j. ecolind.2018.04.033.
    [9] ABOTSI K E, BOSE R, ADJOSSOU K, et al. Ecological drivers of pteridophyte diversity and distribution in Togo (West Africa)[J]. Ecol Indic, 2020, 108:105741. doi:10.1016/j.ecolind.2019.105741.
    [10] DUAN X W, ZHANG G L, RONG L, et al. Spatial distribution and environmental factors of catchment-scale soil heavy metal conta-mination in the dry-hot valley of Upper Red River in southwestern China[J]. Catena, 2015, 135:59-69. doi:10.1016/j.catena.2015.07.006.
    [11] HERNÁNDEZ-ROJAS A, KESSLER M, KRÖMER T, et al. Richness patterns of ferns along an elevational gradient in the Sierra de Juárez, Oaxaca, Mexico:A comparison with Central and South America[J]. Am Fern J, 2018, 108(3):76-94. doi:10.1640/0002-8444-108.3.76.
    [12] CHAO A, CHIU C H. Bridging the variance and diversity decom-position approaches to beta diversity via similarity and differentiation measures[J]. Methods Ecol Evol, 2016, 7(8):919-928. doi:10.1111/2041-210X.12551.
    [13] RICOTTA C, PODANI J. On some properties of the Bray-Curtis dissimilarity and their ecological meaning[J]. Ecol Complex, 2017, 31:201-205. doi:10.1016/j.ecocom.2017.07.003.
    [14] BOLKER B M, BROOKS M E, CLARK C J, et al. Generalized linear mixed models:A practical guide for ecology and evolution[J]. Trends Ecol Evol, 2009, 24(3):127-135. doi:10.1016/j.tree.2008.10.008.
    [15] PINHEIRO J, BATES D, DEBROY S, et al. Nlme:Linear and non-linear mixed effects models[CP/OL]//R Package, Version 31-101. R Package, 2011.
    [16] SHAPIRO S S, WILK M B. An analysis of variance test for normality (complete samples)[J]. Biometrika, 1965, 52(3/4):591-611. doi:10.1093/biomet/52.3-4.591.
    [17] OKSANEN J, KINDT R, LEGENDRE P, et al. The vegan package[J]. Community Ecol Package, 2007, 10:631-637.
    [18] HAQ F, AHMAD H, IQBAL Z, et al. Multivariate approach to the classification and ordination of the forest ecosystem of Nandiar valley western Himalayas[J]. Ecol Ind, 2017, 80:232-241. doi:10.1016/j. ecolind.2017.05.047.
    [19] CHAO A. Nonparametric estimation of the number of classes in a population[J]. Scand J Statist, 1984, 11(4):265-270. doi:10.2307/4615964.
    [20] CHAO A. Estimating the population size for capture-recapture data with unequal catchability[J]. Biometrics, 1987, 43(4):783-791. doi:10.2307/2531532.
    [21] POUTEAU R, MEYER J Y, BLANCHARD P, et al. Fern species richness and abundance are indicators of climate change on high-elevation islands:Evidence from an elevational gradient on Tahiti (French Polynesia)[J]. Climat Change, 2016, 138(1/2):143-156. doi:10.1007/s10584-016-1734-x.
    [22] ZHANG L L, XU C D, FENG J M. Biogeographical explanation of distribution pattern of fern diversity in Yunnan Province[J]. J Chu-xiong Norm Univ, 2017, 32(3):45-50. doi:10.3969/j.issn.1671-7406.2017.03.011. 张伶俐, 徐成东, 冯建孟. 云南地区蕨类植物多样性分布格局的生物地理学解释[J]. 楚雄师范学院学报, 2017, 32(3):45-50. doi:10.3969/j.issn.1671-7406.2017.03.011.
    [23] ANDRADE J L, NOBEL P S. Microhabitats and water relations of epiphytic cacti and ferns in a lowland neotropical forest[J]. Biotropica, 1997, 29(3):261-270. doi:10.1111/j.1744-7429.1997.tb00427.x.
    [24] HIETZ P, BRIONES O. Correlation between water relations and within-canopy distribution of epiphytic ferns in a Mexican cloud forest[J]. Oecologia, 1998, 114(3):305-316. doi:10.1007/s004420050452.
    [25] YANG F C, HU X W, YOU L L. Geographical distribution and floristic composition of pteridophytes in Hainan island[J]. Acta Bot Yunnan, 2007, 29(2):155-160. doi:10.3969/j.issn.2095-0845.2007.02.004. 杨逢春, 胡新文, 尤丽莉. 海南蕨类植物自然分布及区系组成[J]. 云南植物研究, 2007, 29(2):155-160. doi:10.3969/j.issn.2095-0845.2007.02.004.
    [26] YANG F C, ZHANG C L, WU G, et al. Endangered pteridophytes and their distribution in Hainan island, China[J]. Amer Fern J, 2011, 101(2):105-116. doi:10.1640/0002-8444-101.2.105.
    [27] WANG H, WEI Q, WU F F, et al. The characteristics of pteridophytes flora in Mt. Fanjingshan nature reserve[J]. J Guizhou Norm Univ (Nat Sci), 2014, 32(4):22-28. doi:10.3969/j.issn.1004-5570.2014.04.004. 王晖, 魏奇, 吴菲菲, 等. 梵净山自然保护区蕨类植物的区系特征[J]. 贵州师范大学学报(自然科学版), 2014, 32(4):22-28. doi:10.3969/j.issn.1004-5570.2014.04.004.
    [28] XU X, ZHANG H, LUO J, et al. Area-corrected species richness patterns of vascular plants along a tropical elevational gradient[J]. J MT Sci-ENGL, 2017, 14(4):694-704. doi:10.1007/s11629-016-3894-6.
    [29] ALEJANDRO R, HERNANDEZ-CARDENAS, MENDOZA-RUIZ A, et al. The alpine ferns of the trans-Mexican volcanic belt[J]. Amer Fern J, 2019, 109(1):11-25. doi:10.1640/0002-8444-109.1.11.
    [30] YU X, ZHANG B, OU Z, et al. Investigation of natural population and niche analysis for Sorolepidium glaciale, a plant species with extremely small populations[J]. J Hubei Univ National (Nat Sci), 2018, 36(1):1-5. doi:10.13501/j.cnki.42-1569/n.2018.03.001余潇, 张宝, 区智, 等. 极小种群植物玉龙蕨的群落调查及生态位分析[J]. 湖北民族学院学报(自然科学版), 2018, 36(1):1-5. doi:10.13501/j.cnki.42-1569/n.2018.03.001
    [31] HOLTMANN L, KERLER K, WOLFGART L, et al. Habitat hetero-geneity determines plant species richness in urban stormwater ponds[J]. Ecol Eng, 2019, 138:434-443. doi:10.1016/j.ecoleng.2019.07.035.
    [32] JAMES E W Jr., CATHERINE C. Habitat differentiation of ferns in a lowland tropical rain forest[J]. Amer Fern J, 2009, 99(3):162-175. doi:10.1640/0002-8444-99.3.162.
    [33] ZHANG, H, ZHU S D, JOHN R, et al. Habitat filtering and exclusion of weak competitors jointly explain fern species assemblage along a light and water gradient[J]. Sci Rep, 2017, 7:298. doi:10.1038/s41598-017-00429-9.
    [34] ZHOU S X, PENG Y S, GAO P X, et al. Spatial pattern and association of main species in endangered plant Sinojackia rehderiana community[J]. J Trop Subtrop Bot, 2019, 27(4):349-358. doi:10.11926/jtsb.3992. 周赛霞, 彭焱松, 高浦新, 等. 濒危植物狭果秤锤树群落内主要树种的空间分布格局和关联性[J]. 热带亚热带植物学报, 2019, 27(4):349-358. doi:10.11926/jtsb.3992.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨逢春,毛晓叶,刘景欣,黄华平,李叶,构箭勇,文慧婷.元江干热河谷主要环境因子(气温和降水)变化规律及蕨类植物的分布响应[J].热带亚热带植物学报,2020,28(6):537~546

复制
分享
文章指标
  • 点击次数:711
  • 下载次数: 824
  • HTML阅读次数: 967
  • 引用次数: 0
历史
  • 收稿日期:2020-02-10
  • 最后修改日期:2020-04-30
  • 在线发布日期: 2020-11-16
文章二维码