丛枝菌根真菌促进南美蟛蜞菊生长及对难溶磷的吸收
作者:
基金项目:

国家自然科学基金项目(31700342,31600326,31770446);江苏大学高级人才科研启动基金项目(15JDG032);江苏高校水处理技术与材料协同创新中心项目资助


Arbuscular Mycorrhizal Fungi Promote the Growth of Wedelia trilobata and the Absorption of Insoluble Phosphorus
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [55]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了解2种丛枝菌根真菌(AMF)摩西管柄囊霉(Funneliformis mosseae,FM)和地表球囊霉(Glomus versiforme,GV)对入侵植物南美蟛蜞菊(Wedelia trilobata)的生长和对难溶性磷酸盐利用的影响,采用沙培盆栽方式,研究了南美蟛蜞菊在接种AMF与添加难溶性磷酸盐的生长和磷含量的变化。结果表明,在磷限制环境下FM对南美蟛蜞菊的侵染率达55%~69%,GV的侵染率达到63%~80%。添加难溶性磷酸盐后,2种AMF均促进了南美蟛蜞菊茎的伸长(FM:+46%;GV:+65%)、总生物量的增加(FM:+27.2%;GV:+40%)和磷含量的增加(FM:+36.6%;GV:+40.7%)。对比FM,GV对植物利用难溶性磷有更显著的促进作用。因此,南美蟛蜞菊与2种AMF形成的共生体系可以促进植物生长和对营养资源的利用,提高对难溶性磷的吸收效率可能使得南美蟛蜞菊在营养贫乏的环境中更好地建立种群。

    Abstract:

    The aim was to understand the effect of two arbuscular mycorrhizal fungi (AMF), such as Funneliformis mosseae (FM) and Glomus versiforme (GV), on the growth and phosphorus uptake of Wedelia trilobata. The changes in the growth and total P concentration of W. trilobata leaves were studied after inoculated AMF and added insoluble phosphate by sand culture pot planting. The results showed that F. mosseae and G. versiforme could establish symbiosis relationships with W. trilobata with infection rate of 55%-69% and 63%-80%, respectively. When insoluble phosphate were supplied, both F. mosseae and G. versiforme were able to promote the stem elongation (FM:+46%; GV:+65%), total biomass (FM:+27.2%; GV:+40%) and enhance phosphorus content (FM:+36.6%; GV:+40.7%) of W. trilobata. Compared to F. mosseae, G. versiforme was better in enhancing insoluble phosphorus uptake by W. trilobata. Therefore, it was suggested that the symbiosis between W. trilobata and AMF could significantly facilitate the plant growth and enhance the efficiency of insoluble phosphate uptake, which could be benefit the survival of W. trilobata in harsh environment.

    参考文献
    [1] SMITH S E, READ D J. Mycorrhizal Symbiosis[M]. 3rd ed. London:Academic Press, 2008:694.
    [2] TORREZ V, CEULEMANS T, MERGEAY J, et al. Effects of adding an arbuscular mycorrhizal fungi inoculum and of distance to donor sites on plant species recolonization following topsoil removal[J]. Appl Veg Sci, 2016, 19(1):7-19. doi:10.1111/avsc.12193.
    [3] SCHÜBLER A, SCHWARZOTT D, WALKER C. A new fungal phylum, the Glomeromycota:Phylogeny and evolution[J]. Mycol Res, 2001, 105(12):1413-1421. doi:10.1017/s0953756201005196.
    [4] FEDDERMANN N, FINLAY R, BOLLER T, et al. Functional diversity in arbuscular mycorrhiza:The role of gene expression, phosphorrous nutrition and symbiotic efficiency[J]. Fungal Ecol, 2010, 3(1):1-8. doi:10.1016/j.funeco.2009.07.003.
    [5] AUGÉ R M, TOLER H D, SAXTON A M. Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions:A meta-analysis[J]. Mycorrhiza, 2015, 25(1):13-24. doi:10.1007/s00572-014-0585-4.
    [6] FERROL N, TAMAYO E, VARGAS P. The heavy metal paradox in arbuscular mycorrhizas:from mechanisms to biotechnological appli-cations[J]. J Exp Bot, 2016, 67(22):6253-6565. doi:10.1093/jxb/erw403.
    [7] SHRIVASTAVA G, OWNLEY B H, AUGÉ R M, et al. Colonization by arbuscular mycorrhizal and endophytic fungi enhanced terpene production in tomato plants and their defense against a herbivorous insect[J]. Symbiosis, 2015, 65(2):65-74. doi:10.1007/s13199-015-0319-1.
    [8] HEIJDEN M G A, MARTIN F M, SELOSSE M A, et al. Mycorrhizal ecology and evolution:The past, the present, and the future[J]. New Phytol, 2015, 205(4):1406-1423. doi:10.1111/nph.13288.
    [9] YANG H S, SCHROEDER-MORENO M, GIRI B, et al. Arbuscular mycorrhizal fungi and their responses to nutrient enrichment[M]// GIRI B, PRASAD R, VARMA A. Root Biology. Cham:Springer, 2018:429-449. doi:10.1007/978-3-319-75910-4_17.
    [10] ELSER J J. Phosphorus:a limiting nutrient for humanity?[J]. Curr Opin Biotechnol, 2012, 23(6):833-838. doi:10.1016/j.copbio.2012. 03.001.
    [11] ROBERTS T L, JOHNSTON A E. Phosphorus use efficiency and management in agriculture[J]. Resour Conserv Recy, 2015, 105:275-281. doi:10.1016/j.resconrec.2015.09.013.
    [12] WANG H, APPAN A, GULLIVER J S. Modeling of phosphorus dynamics in aquatic sediments:II. Examination of model performance[J]. Water Res, 2003, 37(16):3939-3953. doi:10.1016/S0043-1354(03) 00305-1.
    [13] SINDHU S S, PHOUR M, CHOUDHARY S R, et al. Phosphorus cycling:Prospects of using rhizosphere microorganisms for improving phosphorus nutrition of plants[M]//PARMAR N, SINGH A. Geomicrobiology and Biogeochemistry. Berlin, Heidelberg:Springer, 2014:199-237. doi:10.1007/978-3-642-41837-2_11.
    [14] OSORIO N W, HABTE M. Strategies for utilizing arbuscular mycorrhizal fungi and phosphate-solubilizing microorganisms for enhanced phosphate uptake and growth of plants in the soils of the tropics[M]// KHAN M S, ZAIDI A, MUSARRAT J. Microbial Strategies for Crop Improvement. Berlin:Springer, 2009:325-351. doi:10.1007/978-3-642-01979-1_16.
    [15] BATTINI F, GRØNLUND M, AGNOLUCCI M, et al. Facilitation of phosphorus uptake in maize plants by mycorrhizosphere bacteria[J]. Sci Rep, 2017, 7(1):4686. doi:10.1038/s41598-017-04959-0.
    [16] BAI Y F, GUO S X, LI M. Interactions between invasive plants and arbuscular mycorrhizal fungi:A review[J]. Chin J Appl Ecol, 2011, 22(9):2457-2463. doi:10.13287/j.1001-9332.2011.0351. 柏艳芳, 郭绍霞, 李敏. 入侵植物与丛枝菌根真菌的相互作用[J]. 应用生态学报, 2011, 22(9):2457-2463. doi:10.13287/j.1001-9332. 2011.0351.
    [17] ZHANG L, XU M G, LIU Y, et al. Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium[J]. New Phytol, 2016, 210(3):1022-1032. doi:10.1111/nph.13838.
    [18] KOIDE R T, KABIR Z. Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate[J]. New Phytol, 2000, 148(3):511-517. doi:10.1046/j.1469-8137.2000.00776.x.
    [19] ZHANG L, FAN J Q, DING X D, et al. Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil[J]. Soil Biol Biochem, 2014, 74:177-183. doi:10.1016/j.soilbio.2014.03.004.
    [20] MALDONADO-MENDOZA I E, DEWBRE G R, HARRISON M J. A phosphate transporter gene from the extra-radical mycelium of an arbuscular mycorrhizal fungus Glomus intraradices is regulated in response to phosphate in the environment[J]. Mol Plant Microbe Interact, 2001, 14(10):1140-1148. doi:10.1094/MPMI.2001.14.10.1140.
    [21] PASZKOWSKI U, KROKEN S, ROUX C, et al. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis[J]. Proc Natl Acad Sci USA, 2002, 99(20):13324-13329. doi:10.1073/pnas.202474599.
    [22] XU G H, CHAGUE V, MELAMED-BESSUDO C, et al. Functional characterization of LePT4:A phosphate transporter in tomato with mycorrhiza-enhanced expression[J]. J Exp Bot, 2007, 58(10):2491-2501. doi:10.1093/jxb/erm096.
    [23] FUMANAL B, PLENCHETTE C, CHAUVEL B, et al. Which role can arbuscular mycorrhizal fungi play in the facilitation of Ambrosia artemisiifolia L. invasion in France?[J]. Mycorrhiza, 2006, 17(1):25-35. doi:10.1007/s00572-006-0078-1.
    [24] JI Y H, LIU W X, LIU R J, et al. Functions and mechanisms of arbuscular mycorrhizal fungi in succession of exotic invasive plants[J]. Plant Physiol J, 2013, 49(10):973-980. doi:10.13592/j.cnki.ppj.2013. 10.001. 季彦华, 刘万学, 刘润进, 等. 丛枝菌根真菌在外来植物入侵演替中的作用与机制[J]. 植物生理学报, 2013, 49(10):973-980. doi:10.13592/j.cnki.ppj.2013.10.001.
    [25] QI S S, DAI Z C, MIAO S L, et al. Light limitation and litter of an invasive clonal plant, Wedelia trilobata, inhibit its seedling recruitment[J]. Ann Bot, 2014, 114(2):425-433. doi:10.1093/aob/mcu075.
    [26] SI C C, DAI Z C, LIN Y, et al. Local adaptation and phenotypic plasticity both occurred in Wedelia trilobata invasion across a tropical island[J]. Biol Invas, 2014, 16(11):2323-2337. doi:10.1007/s10530-014-0667-4.
    [27] YU Z P, WANG M H, HUANG Z Q, et al. Temporal changes in soil C-N-P stoichiometry over the past 60 years across subtropical China[J]. Glob Change Biol, 2018, 24(3):1308-1320. doi:10.1111/gcb.13939.
    [28] HE L P, KONG J J, LI G X, et al. Similar responses in morphology, growth, biomass allocation, and photosynthesis in invasive Wedelia trilobata and native congeners to CO2 enrichment[J]. Plant Ecol, 2018, 219(2):145-157. doi:10.1007/s11258-017-0784-0.
    [29] MAJEWSKA M L, BŁASZKOWSKI J, NOBIS M, et al. Root-inhabiting fungi in alien plant species in relation to invasion status and soil chemical properties[J]. Symbiosis, 2015, 65(3):101-115. doi:10. 1007/s13199-015-0324-4.
    [30] WANG B, QIU Y L. Phylogenetic distribution and evolution of mycorrhizas in land plants[J]. Mycorrhiza, 2006, 16(5):299-363. doi:10.1007/s00572-005-0033-6.
    [31] ZUBEK S, MAJEWSKA M L, BŁASZKOWSKI J, et al. Invasive plants affect arbuscular mycorrhizal fungi abundance and species richness as well as the performance of native plants grown in invaded soils[J]. Biol Fert Soils, 2016, 52(6):879-893. doi:10.1007/s00374-016-1127-3.
    [32] HU W W. Ecological effects of arbuscular mycorrhizal fungi (AMF) on common Compositae invasive species in Guangzhou[D]. Guangzhou:Sun Yat-sen University, 2015. 胡文武. 丛枝菌根真菌(AMF)对广州常见菊科入侵植物的生态学效应研究[D]. 广州:中山大学, 2015.
    [33] ELBON A, WHALEN J K. Phosphorus supply to vegetable crops from arbuscular mycorrhizal fungi:A review[J]. Biol Agric Hort, 2015, 31(2):73-90. doi:10.1080/01448765.2014.966147.
    [34] PÜSCHEL D, JANOUŠKOVÁ M, VOŘÍŠKOVÁ A, et al. Arbuscular mycorrhiza stimulates biological nitrogen fixation in two Medicago spp. through improved phosphorus acquisition[J]. Front Plant Sci, 2017, 8:390. doi:10.3389/fpls.2017.00390.
    [35] PHILLIPS J M, HAYMAN D S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection[J]. Trans Br Mycol Soc, 1970, 55(1):158-161. doi:10.1016/s0007-1536(70)80110-3.
    [36] TROUVELOT A, KOUGH J L, GIANINAZZI P V. Mesure du taux de mycorhization va d'un système radiculaire. Recherche de méthodes d'estimation ayant une signification fonctionnelle[M]// GIANINAZZI-PEARSON V, GIANINAZZI S. Physiological and Genetical Aspects of Mycorrhizae. Paris:INRA Press, 1986:217-221.
    [37] WATTS-WILLIAMS S J, SMITH F A, JAKOBSEN I. Soil phosphorus availability is a driver of the responses of maize (Zea mays) to elevated CO2 concentration and arbuscular mycorrhizal colonisation[J]. Sym-biosis, 2019, 77(1):73-82. doi:10.1007/s13199-018-0573-0.
    [38] BALZERGUE C, PUECH-PAGÈS V, BÉCARD G, et al. The regu-lation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events[J]. J Exp Bot, 2011, 62(3):1049-1060. doi:10.1093/jxb/erq335.
    [39] ZALAMEA P C, TURNER B L, WINTER K, et al. Seedling growth responses to phosphorus reflect adult distribution patterns of tropical trees[J]. New Phytol, 2016, 212(2):400-408. doi:10.1111/nph.14045.
    [40] WEN Z H, LI H B, SHEN Q, et al. Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crop species[J]. New Phytol, 2019, 223(2):882-895. doi:10.1111/nph.15833.
    [41] GUALANDI JR R J, AUGÉ R M, KOPSELL D A, et al. Fungal mutualists enhance growth and phytochemical content in Echinacea purpurea[J]. Symbiosis, 2014, 63(3):111-121. doi:10.1007/s13199-014-0293-z.
    [42] YUAN Y G, TANG J J, LENG D, et al. An invasive plant promotes its arbuscular mycorrhizal symbioses and competitiveness through its secondary metabolites:Indirect evidence from activated carbon[J]. PLoS One, 2014, 9(5):e97163. doi:10.1371/journal.pone.0097163.
    [43] ZHANG Q, YANG R Y, TANG J J, et al. Positive feedback between mycorrhizal fungi and plants influences plant invasion success and resistance to invasion[J]. PLoS One, 2010, 5(8):e12380. doi:10. 1371/journal.pone.0012380.
    [44] MAJEWSKA M L, ROLA K, ZUBEK S. The growth and phosphorus acquisition of invasive plants Rudbeckia laciniata and Solidago gigantea are enhanced by arbuscular mycorrhizal fungi[J]. Mycorrhiza, 2017, 27(2):83-94. doi:10.1007/s00572-016-0729-9.
    [45] LI H Y, SMITH S E, HOLLOWAY R E, et al. Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses[J]. New Phytol, 2006, 172(3):536-543. doi:10.1111/j.1469-8137.2006.01846.x.
    [46] SMITH S E, JAKOBSEN I, GRØNLUND M, et al. Roles of arbuscular mycorrhizas in plant phosphorus nutrition:interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition[J]. Plant Physiol, 2011, 156(3):1050-1057. doi:10.1104/pp.111.174581.
    [47] OLSSON P A, van AARLE I M, ALLAWAY W G, et al. Phosphorus effects on metabolic processes in monoxenic arbuscular mycorrhiza cultures[J]. Plant Physiol, 2002, 130(3):1162-1171. doi:10.1104/pp. 009639.
    [48] SCHNEPF A, LEITNER D, KLEPSCH S, et al. Modelling phosphorus dynamics in the soil-plant system[M]// BÜNEMANN E, OBERSON A, FROSSARD E. Phosphorus in Action. Berlin:Springer, 2011:113-133. doi:10.1007/978-3-642-15271-9_5.
    [49] BOLAN N S. A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants[J]. Plant Soil, 1991, 134(2):189-207. doi:10.1007/BF00012037.
    [50] TAWARAYA K, NAITO M, WAGATSUMA T. Solubilization of insoluble inorganic phosphate by hyphal exudates of arbuscular mycorrhizal fungi[J]. J Plant Nutr, 2006, 29(4):657-665. doi:10. 1080/01904160600564428.
    [51] KIRK G J D. A model of phosphate solubilization by organic anion excretion from plant roots[J]. Eur J Soil Sci, 1999, 50(3):369-378. doi:10.1111/j.1365-2389.1999.00239.x.
    [52] AHONEN-JONNARTH U, van HEES P A W, LUNDSTRÖM U S, et al. Organic acids produced by mycorrhizal Pinus sylvestris exposed to elevated aluminium and heavy metal concentrations[J]. New Phytol, 2000, 146(3):557-567. doi:10.1086/338034.
    [53] KARANDASHOV V, BUCHER M. Symbiotic phosphate transport in arbuscular mycorrhizas[J]. Trends Plant Sci, 2005, 10(1):22-29. doi:10.1016/j.tplants.2004.12.003.
    [54] GLASSOP D, SMITH S E, SMITH F W. Cereal phosphate transporters associated with the mycorrhizal pathway of phosphate uptake into roots[J]. Planta, 2005, 222(4):688-698. doi:10.1007/s00425-005-0015-0.
    [55] RAUSCH C, DARAM P, BRUNNER S, et al. A phosphate transporter expressed in arbuscule-containing cells in potato[J]. Nature, 2001, 414(6862):462-470. doi:10.1038/35106601.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李琴,陈琪,贺芙蓉,BHARANI Manoharan,戴志聪,祁珊珊,杜道林.丛枝菌根真菌促进南美蟛蜞菊生长及对难溶磷的吸收[J].热带亚热带植物学报,2020,28(4):339~346

复制
分享
文章指标
  • 点击次数:551
  • 下载次数: 648
  • HTML阅读次数: 520
  • 引用次数: 0
历史
  • 收稿日期:2019-10-29
  • 最后修改日期:2019-12-24
  • 在线发布日期: 2020-07-23
文章二维码