6种拟南芥突变体热敏感性差异的比较分析
作者单位:

山东师范大学

基金项目:

国家自然科学基因项目(31270298)


Comparison of Thermo-sensitivity among Six Mutants of Arabidopsis thaliana
Affiliation:

Shandong Normal University

Fund Project:

The National Natural Science Foundation of China (Grant No. 31270298)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了解拟南芥(Arabidopsis thaliana)热敏感突变体的热敏感性,对6种常用的拟南芥热敏感突变体,hot1、apx2、fes1a、hsfa7a、hop1-2-3及hsp70-15进行了比较分析。结果表明,6种突变体的热敏感性均高于野生型,但他们之间的热敏感性有显著差异,45℃极度高温下90 min,hot1的白化死亡率最高,处理105 min后,fes1a也出现高比率的白化死亡,处理135 min后,apx2、hsfa7a和hop1-2-3表现出几乎相同的损伤现象,热损伤均比hsp70-15严重。因此, 6种突变体的热敏感性依次为hot1>fes1a>apx2、hsfa7a和hop1-2-3> hsp70-15。

    Abstract:

    In order to understand the thermo-sensitivity of heat sensitive mutants of Arabidopsis thaliana, the thermo-sensitivities were compared among six mutants, including hsp70-15, apx2, hop1-2-3, hsfa7a, fes1a and hot1. The results showed that the thermo-sensitivities of six mutants were higher than that of WT, but there were significant difference among them. The 8-day-old seedlings were adapted at 38℃ for 2 h at first, then they were under heat stress at 45℃. Seedlings of mutant hot1 showed albinism with high mortality under 45℃ for 90 min. Seedlings of mutant fes1a also suffered high death rate under 45℃ for 105 min. Further, seedlings of mutants apx2, hsfa7a and hop1-2-3 showed almost identical injury phenomenon under 45℃ for 135 min, their heat injury were more severe than that of mutant hsp70-15. Therefore, the thermo-sensitivities of six mutants were in the order of hot1>fes1a>apx2, hsfa7a and hop1-2-3>hsp70-15.

    参考文献
    [1] LARKINDALE J, VIERLING E. Core genome responses involved in acclimation to high temperature[J]. Plant Physiol, 2008, 146(2):748-761. doi:10.1104/pp.107.112060.
    [2] FU C, HOU Y F, GE J J, et al. Increased fes1a thermotolerance is induced by BAG6 knockout[J]. Plant Mol Biol, 2019, 100(1/2):73-82. doi:10.1007/s11103-019-00844-8.
    [3] HONG S W, VIERLING E. Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress[J]. Proc Natl Acad Sci USA, 2000, 97(8):4392-4397. doi:10.1073/pnas.97.8.4392.
    [4] BANIWAL S K, BHARTI K, CHAN K Y, et al. Heat stress response in plants:A complex game with chaperones and more than twenty heat stress transcription factors[J]. J Biosci, 2004, 29(4):471-487. doi:10.1007/BF02712120.
    [5] McLOUGHLIN F, KIM M, MARSHALL R S, et al. HSP101 interacts with the proteasome and promotes the clearance of ubiquitylated protein aggregates[J]. Plant Physiol, 2019, 180(4):1829-1847. doi:10.1104/pp.19.00263.
    [6] GLOVER J R, LINDQUIST S. Hsp104, Hsp70, and Hsp40:A novel chaperone system that rescues previously aggregated proteins[J]. Cell, 1998, 94(1):73-82. doi:10.1016/S0092-8674(00)81223-4.
    [7] SZABO A, LANGER T, SCHRÖDER H, et al. The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system DnaK, DnaJ, and GrpE[J]. Proc Natl Acad Sci USA, 1994, 91(22):10345-10349. doi:10.1073/pnas.91.22.10345.
    [8] MORIMOTO R I. Regulation of the heat shock transcriptional response:Cross talk between a family of heat shock factors, molecular chaperones, and negative regulators[J]. Genes Dev, 1998, 12(24):3788-3796. doi:10.1101/gad.12.24.3788.
    [9] VANNINI A, CRAMER P. Conservation between the RNA polymerase I, II, and III transcription initiation machineries[J]. Mol Cell, 2012, 45(4):439-446. doi:10.1016/j.molcel.2012.01.023.
    [10] KOSANO H, STENSGARD B, CHARLESWORTH M C, et al. The assembly of progesterone receptor-hsp90 complexes using purified proteins[J]. J Biol Chem, 1998, 273(49):32973-32979. doi:10.1074/jbc.273.49.32973.
    [11] FERNÁNDEZ-BAUTISTA N, FERNÁNDEZ-CALVINO L, MUÑOZ A, et al. HOP family plays a major role in long-term acquired thermo-tolerance in Arabidopsis[J]. Plant Cell Environ, 2018, 41(8):1852-1869. doi:10.1111/pce.13326.
    [12] ZHANG J X, WANG C, YANG C Y, et al. The role of Arabidopsis AtFes1A in cytosolic Hsp70 stability and abiotic stress tolerance[J]. Plant J, 2010, 62(4):539-548. doi:10.1111/j.1365-313X.2010.04173.x.
    [13] KOTAK S, LARKINDALE J, LEE U, et al. Complexity of the heat stress response in plants[J]. Curr Opin Plant Biol, 2007, 10(3):310-316. doi:10.1016/j.pbi.2007.04.011.
    [14] DOYLE J J, DOYLE J L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue[J]. Phytochem Bull, 1987, 19:11-15.
    [15] LIN B L, WANG J S, LIU H C, et al. Genomic analysis of the Hsp70 superfamily in Arabidopsis thaliana[J]. Cell Stress Chaperones, 2001, 6(3):201-208. doi:10.1379/1466-1268(2001)006<0201:gaoths>2.0.co;2.
    [16] CAZALÉ A C, CLÉMENT M, CHIARENZA S, et al. Altered expre-ssion of cytosolic/nuclear HSC70-1 molecular chaperone affects deve-lopment and abiotic stress tolerance in Arabidopsis thaliana[J]. J Exp Bot, 2009, 60(9):2653-2664. doi:10.1093/jxb/erp109.
    [17] CHEN X, SHI L, ZHU L, et al. Molecular evolution characteristics and expression pattern analysis of the heat shock protein 70(HSP70) gene superfamily in plant[J]. Genom Appl Biol, 2017, 36(10):4282-4294. doi:10.13417/j.gab.036.004282. 陈旭, 石垒, 朱璐, 等. 植物HSP70蛋白家族分子进化特征及其表达模式分析[J]. 基因组学与应用生物学, 2017, 36(10):4282-4294. doi:10.13417/j.gab.036.004282.
    [18] LEE S, LEE D W, LEE Y, et al. Heat shock protein cognate 70-4 and an E3 ubiquitin ligase, CHIP, mediate plastid-destined precursor degradation through the ubiquitin-26S proteasome system in Arabidopsis[J]. Plant Cell, 2009, 21(12):3984-4001. doi:10.1105/tpc.109.071548.
    [19] SU P H, LI H M. Arabidopsis Stromal 70-kD heat shock proteins are essential for plant development and important for thermotolerance of germinating seeds[J]. Plant Physiol, 2008, 146(3):1231-1241. doi:10.1104/pp.107.114496.
    [20] NOVER L, BHARTI K, DÖRING P, et al. Arabidopsis and the heat stress transcription factor world:How many heat stress transcription factors do we need?[J]. Cell Stress Chaperones, 2001, 6(3):177-189. doi:10.1379/1466-1268(2001)006<0177:aathst>2.0.co;2.
    [21] LIU H C, CHANG Y Y. Common and distinct functions of Arabidopsis class A1 and A2 heat shock factors in diverse abiotic stress responses and development[J]. Plant Physiol, 2013, 163(1):276-290. doi:10.1104/pp.113.221168.
    [22] HAN S H, PARK Y J, PARK C M. Light primes the thermally induced detoxification of reactive oxygen species during development of thermotolerance in Arabidopsis[J]. Plant Cell Physiol, 2019, 60(1):230-241. doi:10.1093/pcp/pcy206.
    [23] QU A L, DING Y F, JIANG Q, et al. Molecular mechanisms of the plant heat stress response[J]. Biochem Biophys Res Commun, 2013, 432(2):203-207. doi:10.1016/j.bbrc.2013.01.104.
    [24] GILL S S, TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiol Biochem, 2010, 48(12):909-930. doi:10.1016/j.plaphy.2010.08.016.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈梦雪,葛晶晶,刘箭.6种拟南芥突变体热敏感性差异的比较分析[J].热带亚热带植物学报,2020,28(3):285~291

复制
分享
文章指标
  • 点击次数:678
  • 下载次数: 902
  • HTML阅读次数: 467
  • 引用次数: 0
历史
  • 收稿日期:2019-09-07
  • 最后修改日期:2020-01-10
  • 录用日期:2020-01-13
  • 在线发布日期: 2020-06-29
文章二维码