模拟大气氮沉降对中国森林生态系统影响的研究进展
作者:
基金项目:

国家自然科学基金项目(41731176,31700422);中国科学院青年创新促会基金项目(2015287)资助


Effects of Simulated Atmospheric Nitrogen Deposition on Forest Ecosystems in China: An Overview
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [209]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    人类活动加剧了活性氮的生产和排放,并导致氮沉降日益增加并全球化。目前,人类活动对全球氮循环的干扰已经超出了地球系统安全运行的界限。中国已成为全球氮沉降的高发区域,高氮沉降已经威胁到生态系统的健康和安全,并成为生态文明建设过程中亟待理清和解决的热点问题。对国际上和中国森林生态系统模拟氮沉降研究的概况进行了综述,并从生物学和非生物学两大过程重点阐述模拟氮沉降增加对中国主要森林生态系统影响的研究进展。中国自2000年以后才开始重视大气氮沉降产生的生态环境问题,中国科学院华南植物园在国内森林生态系统模拟氮沉降试验研究上做出了开创性的贡献。模拟氮沉降研究表明,持续高氮输入将会显著改变森林生态系统的结构和功能,并威胁生态系统的健康发展,特别是处于氮沉降热点区域的中国中南部。森林生态系统的氮沉降效应依赖于系统的氮状态、土地利用历史、气候特征、林型和林龄等。最后,对未来的研究提出了一些建议,包括加强长期跟踪研究和不同气候带站点之间的联网研究,特别是在森林生态系统对长期氮沉降响应与适应的过程机制、地下碳氮吸存潜力研究、以及与其他全球变化因子的耦合研究等方面,以期为森林生态系统的可持续发展提供理论基础和管理依据。

    Abstract:

    Human activities, such as combustion of fossil fuel, production and application of nitrogenous fertilizer, and intensive livestock production, have been accelerating the production and emission of reactive nitrogen (e.g., NH4+, NO3-), leading to elevated nitrogen (N) deposition at regional and global scales. Human interference with N cycle has gone beyond the safe operating space for humanity. China is one of the three regions with the highest N deposition in the world. High N deposition has threatened the health and safety of terrestrial ecosystems, which should be addressed urgently during the process of ecological civilization construction. The research history on simulated N deposition in China and world was reviewed, focused on how simulated N deposition affects forest ecosystems in China, including soil acidification, plant element chemistry, plant growth and diversity, soil microbial community and enzyme activities, soil fauna, greenhouse gas emissions, ecosystem N and phosphorus cycles, soil N transformation, ecosystem N fixation, litter decomposition, and ecosystem carbon sequestration. The atmospheric N deposition has been concerned since 2000s. In 2002, the first long-term forest ecosystem N manipulative experiments were established by South China Botanical Garden (SCBG) of the Chinese Academy of Sciences, which is playing a leading role in the field of nitrogen deposition and forest ecosystems in China. In 2013, SCBG, for the first time, designed a novel experiment with canopy addition of N (CAN) vs. understory addition of N (UAN) in China. Results from N manipulative experiments across China showed that continuing high N deposition greatly altered forest structure and functioning, threatening ecosystem health, especially in the south-central China. The main results are as follows:(1) There is a fertilization effect of N deposition in temperate and boreal forests, but there seem no positive effects on plant growth in N-rich tropical forests because of N saturation. (2) Excess N deposition can lead to soil acidification and nutrient imbalance. (3) Elevated N deposition has accelerated N cycling rate and its transformation process, but depressed ecosystem N fixation rate, and altered ecosystem P availability and cycling, litter decomposition process and greenhouse gas emissions. (4) High N deposition reduced understory plants diversity and changed the structure of soil microbial community. (5) Nitrogen deposition generally simulates aboveground vegetation C sequestration across China, but there remains uncertain on belowground soil C sequestration. (6) Tropical and subtropical forest ecosystems are non-ignorable N sinks, depending on the forms and fates of added N. (7) The effects of N deposition on forest ecosystems are variable, depending on ecosystem N status, land-use history, climate, and forest types and ages. Considering that there remain uncertainties on the long-term effects of N deposition in China, it is suggested that it is necessary to continue the present studies in a longer term, and to expand a network research among field sites along climate gradients. It would be further highlighted to explore how forest ecosystems respond and acclimate to long-term N inputs, to quantify belowground C and N sequestration, and to jointly consider multiple global change factors (e.g., climate warming, CO2 enrichment, changes in precipitation patterns), all of which are important for forest management and sustainable development in the future.

    参考文献
    [1] VITOUSEK P M, HOWARTH R W. Nitrogen limitation on land and in the sea:How can it occur?[J]. Biogeochemistry, 1991, 13(2):87-115. doi:10.1007/BF00002772.
    [2] LEBAUER D S, TRESEDER K K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed[J]. Ecology, 2008, 89(2):371-379. doi:10.1890/06-2057.1.
    [3] GALLOWAY J N, DENTENER F J, CAPONE D G, et al. Nitrogen cycles:Past, present, and future[J]. Biogeochemistry, 2004, 70(2):153-226. doi:10.1007/s10533-004-0370-0.
    [4] CUI S H, SHI Y L, GROFFMAN P M, et al. Centennial-scale analysis of the creation and fate of reactive nitrogen in China (1910-2010)[J]. Proc Natl Acad Sci USA, 2013, 110(6):2052-2057. doi:10.1073/pnas. 1221638110.
    [5] LÜ C Q, TIAN H Q. Spatial and temporal patterns of nitrogen deposition in China:Synthesis of observational data[J]. J Geophys Res-Atmos, 2007, 112(D22):D22S05. doi:10.1029/2006JD007990.
    [6] GU B J, JU X T, CHANG J, et al. Integrated reactive nitrogen budgets and future trends in China[J]. Proc Natl Acad Sci USA, 2015, 112(28):8792-8797. doi:10.1073/pnas.1510211112.
    [7] XU W, LUO X S, PAN Y P, et al. Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China[J]. Atmos Chem Phys, 2015, 15(21):12345-12360. doi:10.5194/acp-15-12345-2015.
    [8] JIA Y L, YU G R, HE N P, et al. Spatial and decadal variations in inorganic nitrogen wet deposition in China induced by human activity[J]. Sci Rep, 2014, 4:3763. doi:10.1038/srep03763.
    [9] BOBBINK R, HICKS K, GALLOWAY J, et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity:A synthesis[J]. Ecol Appl, 2010, 20(1):30-59. doi:10.1890/08-1140.1.
    [10] YU G R, JIA Y L, HE N P, et al. Stabilization of atmospheric nitrogen deposition in China over the past decade[J]. Nat Geosci, 2019, 12(6):424-429. doi:10.1038/s41561-019-0352-4.
    [11] YU G R, GAO Y, WANG Q F et al. Discussion on the key processes of carbon-nitrogen-water coupling cycles and biological regulation mechanisms in terrestrial ecosystem[J]. Chin J Eco-Agric, 2013, 21(1):1-13. doi:10.3724/SP.J.1011.2013.00001. 于贵瑞, 高扬, 王秋凤, 等. 陆地生态系统碳-氮-水循环的关键耦合过程及其生物调控机制探讨[J]. 中国生态农业学报, 2013, 21(1):1-13. doi:10.3724/SP.J.1011.2013.00001.
    [12] GRUBER N, GALLOWAY J N. An Earth-system perspective of the global nitrogen cycle[J]. Nature, 2008, 451(7176):293-296. doi:10. 1038/nature06592.
    [13] LU X K, VITOUSEK P M, MAO Q G, et al. Plant acclimation to long-term high nitrogen deposition in an N-rich tropical forest[J]. Proc Natl Acad Sci USA, 2018, 115(20):5187-5192. doi:10.1073/pnas. 1720777115.
    [14] PHOENIX G K, HICKS W K, CINDERBY S, et al. Atmospheric nitrogen deposition in world biodiversity hotspots:The need for a greater global perspective in assessing N deposition impacts[J]. Glob Change Biol, 2006, 12(3):470-476. doi:10.1111/j.1365-2486.2006. 01104.x.
    [15] BOWMAN W D, CLEVELAND C C, HALADA Ĺ, et al. Negative impact of nitrogen deposition on soil buffering capacity[J]. Nat Geosci, 2008, 1(11):767-770. doi:10.1038/ngeo339.
    [16] ZHANG W, MO J M, YU G R, et al. Emissions of nitrous oxide from three tropical forests in southern China in response to simulated nitrogen deposition[J]. Plant Soil, 2008, 306(1/2):221-236. doi:10.1007/s11104-008-9575-7.
    [17] LU X K, MO J M, GILLIAM F S, et al. Effects of experimental nitrogen additions on plant diversity in an old-growth tropical forest[J]. Glob Change Biol, 2010, 16(10):2688-2700. doi:10.1111/j.1365-2486.2010.02174.x.
    [18] LU X K, MAO Q G, GILLIAM F S, et al. Nitrogen deposition contri-butes to soil acidification in tropical ecosystems[J]. Glob Change Biol, 2014, 20(12):3790-3801. doi:10.1111/gcb.12665.
    [19] MIDOLO G, ALKEMADE R, SCHIPPER A M, et al. Impacts of nitrogen addition on plant species richness and abundance:A global meta-analysis[J]. Glob Ecol Biogeogr, 2019, 28(3):398-413. doi:10. 1111/geb.12856.
    [20] ABER J, McDOWELL W, NADELHOFFER K, et al. Nitrogen satu-ration in temperate forest ecosystems[J]. BioScience, 1998, 48(11):921-934. doi:10.2307/1313296.
    [21] ROCKSTRÖM J, STEFFEN W, NOONE K, et al. A safe operating space for humanity[J]. Nature, 2009, 461(7263):472-475. doi:10.1038/461472a.
    [22] WRIGHT R F, RASMUSSEN L. Introduction to the NITREX and EXMAN projects[J]. For Ecol Manage, 1998, 101(1/2/3):1-7. doi:10. 1016/S0378-1127(97)00120-5.
    [23] MAGILL A H, ABER J D, CURRIE W S, et al. Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA[J]. For Ecol Manage, 2004, 196(1):7-28. doi:10. 1016/j.foreco.2004.03.033.
    [24] RUSTAD L E. The response of terrestrial ecosystems to global climate change:Towards an integrated approach[J]. Sci Total Environ, 2008, 404(2/3):222-235. doi:10.1016/j.scitotenv.2008.04.050.
    [25] ZHAO D W, SUN B Z. Air pollution and acid rain in China[J]. Ambio, 1986, 15(1):2-5.
    [26] MO J M, BROWN S, XUE J H, et al. Response of litter decomposition to simulated N deposition in disturbed, rehabilitated and mature forests in subtropical China[J]. Plant Soil, 2006, 282(1/2):135-151. doi:10. 1007/s11104-005-5446-7.
    [27] MO J M, ZHANG W, ZHU W X, et al. Nitrogen addition reduces soil respiration in a mature tropical forest in southern China[J]. Glob Change Biol, 2008, 14(2):403-412. doi:10.1111/j.1365-2486.2007. 01503.x.
    [28] DU E Z, ZHOU Z, LI P, et al. NEECF:A project of nutrient enrichment experiments in China's forests[J]. J Plant Ecol, 2013, 6(5):428-435. doi:10.1093/jpe/rtt008.
    [29] LIU X J, DUAN L, MO J M, et al. Nitrogen deposition and its ecological impact in China:An overview[J]. Environ Pollut, 2011, 159(10):2251-2264. doi:10.1016/j.envpol.2010.08.002.
    [30] FU Z, NIU S L, DUKES J S. What have we learned from global change manipulative experiments in China? A meta-analysis[J]. Sci Rep, 2015, 5:12344. doi:10.1038/srep12344.
    [31] ZHU J X, WANG Q F, HE N P, et al. Imbalanced atmospheric nitrogen and phosphorus depositions in China:Implications for nutrient limitation[J]. J Geophys Res-Biogeosci, 2016, 121(6):1605-1616. doi:10.1002/2016JG003393.
    [32] ZHENG M H, ZHANG W, LUO Y Q, et al. Stoichiometry controls asymbiotic nitrogen fixation and its response to nitrogen inputs in a nitrogen-saturated forest[J]. Ecology, 2018, 99(9):2037-2046. doi:10. 1002/ecy.2416.
    [33] KOU L, LI S G, WANG H M, et al. Unaltered phenology but increased production of ectomycorrhizal roots of Pinus elliottii under 4 years of nitrogen addition[J]. New Phytol, 2019, 221(4):2228-2238. doi:10. 1111/nph.15542.
    [34] XING A J, XU L C, SHEN H H, et al. Long term effect of nitrogen addition on understory community in a Chinese boreal forest[J]. Sci Total Environ, 2019, 646:989-995. doi:10.1016/j.scitotenv.2018.07. 350.
    [35] ZHANG W, SHEN W J, ZHU S D, et al. Can canopy addition of nitrogen better illustrate the effect of atmospheric nitrogen deposition on forest ecosystem?[J]. Sci Rep, 2015, 5(1):11245. doi:10.1038/srep 11245.
    [36] FANG Y T, WANG X M, ZHU F F, et al. Three-decade changes in chemical composition of precipitation in Guangzhou City, southern China:Has precipitation recovered from acidification following sulphur dioxide emission control?[J]. Tellus B, 2013, 65:20213. doi:10.3402/tellusb.v65i0.20213.
    [37] DU E, BE VRIES W, LIU X, et al. Spatial boundary of urban ‘acid islands’ in China[J]. Sci Rep, 2015, 5:12625. doi:10. 1038/srep12625.
    [38] ULRICH B. Natural and anthropogenic components of soil acidify-cation[J]. Z Pflanz Bodenkunde, 1986, 149(6):702-717. doi:10.1002/jpln.19861490607.
    [39] DU E Z, JIANG Y, FANG J Y, et al. Inorganic nitrogen deposition in China's forests:Status and characteristics[J]. Atmos Environ, 2014, 98:474-482. doi:10.1016/j.atmosenv.2014.09.005.
    [40] FANG Y T, YOH M, KOBA K, et al. Nitrogen deposition and forest nitrogen cycling along an urban-rural transect in southern China[J]. Global Change Biol, 2011, 17(2):872-885. doi:10.1111/j.1365-2486. 2010.02283.x.
    [41] LU X K, MAO Q G, MO J M, et al. Divergent responses of soil buffering capacity to long-term N deposition in three typical tropical forests with different land-use history[J]. Environ Sci Technol, 2015, 49(7):4072-4080. doi:10.1021/es5047233.
    [42] HUANG Y M, KANG R H, MULDER J, et al. Nitrogen saturation, soil acidification, and ecological effects in a subtropical pine forest on acid soil in southwest China[J]. J Geophys Res-Biogeo, 2015, 120(11):2457-2472. doi:10.1002/2015JG003048.
    [43] MAO Q G, LU X K, MO H, et al. Effects of simulated N deposition on foliar nutrient status, N metabolism and photosynthetic capacity of three dominant understory plant species in a mature tropical forest[J]. Sci Total Environ, 2018, 610-611:555-562. doi:10.1016/j.scitotenv. 2017.08.087.
    [44] HE X J, HOU E Q, LIU Y, et al. Altitudinal patterns and controls of plant and soil nutrient concentrations and stoichiometry in subtropical China[J]. Sci Rep, 2016, 6:24261. doi:10.1038/srep24261.
    [45] GILLIAM F S, MAY J D, ADAMS M B. Response of foliar nutrients of Rubus allegheniensis to nutrient amendments in a central Appala-chian hardwood forest[J]. For Ecol Manage, 2018, 411:101-107. doi:10.1016/j.foreco.2018.01.022.
    [46] LI D J, MO J M, FANG Y T, et al. Effects of simulated nitrogen deposition on biomass production and allocation in Schima superba and Cryptocarya concinna seedlings in subtropical China[J]. Acta Phytoecol Sin, 2005, 29(4):543-549. doi:10.17521/cjpe.2005.0073. 李德军, 莫江明, 方运霆, 等. 模拟氮沉降对南亚热带两种乔木幼苗生物量及其分配的影响[J]. 植物生态学报, 2005, 29(4):543-549. doi:10.17521/cjpe.2005.0073.
    [47] MO J M, LI D J, GUNDERSEN P. Seedling growth response of two tropical tree species to nitrogen deposition in southern China[J]. Eur J For Res, 2008, 127(4):275-283. doi:10.1007/s10342-008-0203-0.
    [48] YUAN Z Y, CHEN H Y H. Negative effects of fertilization on plant nutrient resorption[J]. Ecology, 2015, 96(2):373-380. doi:10.1890/14-0140.1.
    [49] DENG M F, LIU L L, SUN Z Z, et al. Increased phosphate uptake but not resorption alleviates phosphorus deficiency induced by nitrogen deposition in temperate Larix principis-rupprechtii plantations[J]. New Phytol, 2016, 212(4):1019-1029. doi:10.1111/nph.14083.
    [50] ZHAO Q, LIU X Y, HU Y L, et al. Effects of nitrogen addition on nutrient allocation and nutrient resorption efficiency in Larix gmelinii[J]. Sci Silv Sin, 2010, 46(5):14-19. doi:10.11707/j.1001-7488.20100503. 赵琼, 刘兴宇, 胡亚林, 等. 氮添加对兴安落叶松养分分配和再吸收效率的影响[J]. 林业科学, 2010, 46(5):14-19. doi:10.11707/j. 1001-7488.20100503.
    [51] TIAN D, DU E Z, JIANG L, et al. Responses of forest ecosystems to increasing N deposition in China:A critical review[J]. Environ Pollut, 2018, 243:75-86. doi:10.1016/j.envpol.2018.08.010.
    [52] YUE K, YANG W Q, PENG Y, et al. Individual and combined effects of multiple global change drivers on terrestrial phosphorus pools:A meta-analysis[J]. Sci Total Environ, 2018, 630:181-188. doi:10. 1016/j.scitotenv.2018.02.213.
    [53] YUE K, Peng Y, PENG C H, et al. Stimulation of terrestrial ecosystem carbon storage by nitrogen addition:A meta-analysis[J]. Sci Rep, 2016, 6:19895. doi:10.1038/srep19895.
    [54] DENG Q, HUI D F, DENNIS S, et al. Responses of terrestrial ecosystem phosphorus cycling to nitrogen addition:A meta-analysis[J]. Glob Ecol Biogeogr, 2017, 26(6):713-728. doi:10.1111/geb.12576.
    [55] YUE K, FORNARA D A, YANG W Q, et al. Effects of three global change drivers on terrestrial C:N:P stoichiometry:A global synthesis[J]. Glob Change Biol, 2017, 23(6):2450-2463. doi:10.1111/gcb. 13569.
    [56] MO Q F, ZOU B, LI Y W, et al. Response of plant nutrient stoichio-metry to fertilization varied with plant tissues in a tropical forest[J]. Sci Rep, 2015, 5:14605. doi:10.1038/srep14605.
    [57] ZHU F F, YOH M, GILLIAM F S, et al. Nutrient limitation in three lowland tropical forests in southern China receiving high nitrogen deposition:Insights from fine root responses to nutrient additions[J]. PLoS One, 2013, 8(12):e82661. doi:10.1371/journal.pone.0082661.
    [58] LI W B, JIN C J, GUAN D X, et al. The effects of simulated nitrogen deposition on plant root traits:A meta-analysis[J]. Soil Biol Biochem, 2015, 82:112-118. doi:10.1016/j.soilbio.2015.01.001.
    [59] XIA J Y, WAN S Q. Global response patterns of terrestrial plant species to nitrogen addition[J]. New Phytol, 2008, 179(2):428-439. doi:10. 1111/j.1469-8137.2008.02488.x.
    [60] WRIGHT S J, TURNER B L, YAVITT J B, et al. Plant responses to fertilization experiments in lowland, species-rich, tropical forests[J]. Ecology, 2018, 99(5):1129-1138. doi:10.1002/ecy.2193.
    [61] SIDDIQUE I, VIEIRA I C G, SCHMIDT S, et al. Nitrogen and phosphorus additions negatively affect tree species diversity in tropical forest regrowth trajectories[J]. Ecology, 2010, 91(7):2121-2131. doi:10.1890/09-0636.1.
    [62] de VRIES W, DU E Z, BUTTERBACH-BAHL K. Short and long-term impacts of nitrogen deposition on carbon sequestration by forest eco-systems[J]. Curr Opin Environ Sust, 2014, 9-10:90-104. doi:10. 1016/j.cosust.2014.09.001.
    [63] YAN G Y, XING Y J, WANG J Y, et al. Sequestration of atmospheric CO2 in boreal forest carbon pools in northeastern China:Effects of nitrogen deposition[J]. Agric For Meteorol, 2018, 248:70-81. doi:10. 1016/j.agrformet.2017.09.015.
    [64] LIU X Y, DU E Z, XU L C, et al. Response of tree growth to nitrogen addition in a Larix gmelinii primitive forest[J]. Chin J Plant Ecol, 2015, 39(5):433-441. doi:10.17521/cjpe.2015.0042. 刘修元, 杜恩在, 徐龙超, 等. 落叶松原始林树木生长对氮添加的响应[J]. 植物生态学报, 2015, 39(5):433-441. doi:10.17521/cjpe. 2015.0042.
    [65] TIAN D, LI P, FANG W J, et al. Growth responses of trees and understory plants to nitrogen fertilization in a subtropical forest in China[J]. Biogeosciences, 2017, 14:3461-3469. doi:10.5194/bg-14-3461-2017.
    [66] JIANG L, TIAN D, MA S H, et al. The response of tree growth to nitrogen and phosphorus additions in a tropical montane rainforest[J]. Sci Total Environ, 2018, 618:1064-1070. doi:10.1016/j.scitotenv.2017. 09.099.
    [67] SALA O E, CHAPIN F S Ⅲ, ARMESTO J J, et al. Global biodiversity scenarios for the year 2100[J]. Science, 2000, 287(5459):1770-1774. doi:10.1126/science.287.5459.1770.
    [68] DU E Z. Integrating species composition and leaf nitrogen content to indicate effects of nitrogen deposition[J]. Environ Pollut, 2017, 221:392-397. doi:10.1016/j.envpol.2016.12.001.
    [69] WU J P, LIU W F, FAN H B, et al. Asynchronous responses of soil microbial community and understory plant community to simulated nitrogen deposition in a subtropical forest[J]. Ecol Evol, 2013, 3(11):3895-3905. doi:10.1002/ece3.750.
    [70] HUANG L J, ZHU W X, REN H, et al. Impact of atmospheric nitrogen deposition on soil properties and herb-layer diversity in remnant forests along an urban-rural gradient in Guangzhou, southern China[J]. Plant Ecol, 2012, 213(7):1187-1202. doi:10.1007/s11258-012-0080-y.
    [71] LU X K, MO J M, GILLIAM F S, et al. Effects of experimental nitrogen additions on plant diversity in tropical forests of contrasting disturbance regimes in southern China[J]. Environ Pollut, 2011, 159:2228-2235. doi:10.1016/j.envpol.2010.10.037.
    [72] LI H S, WANG J S, LIU X, et al. Effect of simulation N deposition on herbaceous vegetation community in the plantation and natural forests of Pinus tabulaeformis in the Taiyue Mountain[J]. Acta Ecol Sin, 2015, 35(11):3910-3721. doi:10.5846/stxb201307141892. 李化山, 汪金松, 刘星, 等. 模拟N沉降对太岳山油松人工林和天然林草本群落的影响[J]. 生态学报, 2015, 35(11):3910-3721. doi:10. 5846/stxb201307141892.
    [73] ZHANG C, ZHANG X Y, ZOU H T, et al. Contrasting effects of ammonium and nitrate additions on the biomass of soil microbial communities and enzyme activities in subtropical China[J]. Biogeo-sciences, 2017, 14:4815-4827. doi:10.5194/bg-14-4815-2017.
    [74] WANG C, LU X K, MORI T, et al. Responses of soil microbial community to continuous experimental nitrogen additions for 13 years in a nitrogen-rich tropical forest[J]. Soil Biol Biochem, 2018, 121:103-112. doi:10.1016/j.soilbio.2018.03.009.
    [75] LIANG L Z, CHEN F, HAN H R, et al. Pathways regulating decreased soil respiration with nitrogen addition in a subtropical forest in China[J]. Water Air Soil Pollut, 2019, 230:91. doi:10.1007/s11270-019-4144-7.
    [76] FAN Y X, LIN F, YANG L M, et al. Decreased soil organic P fraction associated with ectomycorrhizal fungal activity to meet increased P demand under N application in a subtropical forest ecosystem[J]. Biol Fert Soils, 2018, 54(1):149-161. doi:10.1007/s00374-017-1251-8.
    [77] ZHAO B, GENG Y, CAO J, et al. Contrasting responses of soil respi-ration components in response to five-year nitrogen addition in a Pinus tabulaeformis forest in northern China[J]. Forests, 2018, 9:544. doi:10.3390/f9090544.
    [78] LIU C X, DONG Y H, SUN Q W, et al. Soil bacterial community response to short-term manipulation of the nitrogen deposition form and dose in a Chinese fir plantation in southern China[J]. Water Air Soil Pollut, 2016, 227:447. doi:10.1007/s11270-016-3152-0.
    [79] WANG Y S, CHENG S L, FANG H J, et al. Contrasting effects of ammonium and nitrate inputs on soil CO2 emission in a subtropical coniferous plantation of southern China[J]. Biol Fert Soils, 2015, 51(7):815-825. doi:10.1007/s00374-015-1028-x.
    [80] CHEN X M, LI Y L, MO J M, et al. Effects of nitrogen deposition on soil organic carbon fractions in the subtropical forest ecosystems of S China[J]. J Plant Nutr Soil Sci, 2012, 175(6):947-953. doi:10.1002/jpln.201100059.
    [81] YAN G Y, XING Y J, Xu L J, et al. Effects of different nitrogen additions on soil microbial communities in different seasons in a boreal forest[J]. Ecosphere, 2017, 8(7):e01879. doi:10.1002/ecs2.1879.
    [82] TIAN D, JIANG L, MA S H, et al. Effects of nitrogen deposition on soil microbial communities in temperate and subtropical forests in China[J]. Sci Total Environ, 2017, 607-608:1367-1375. doi:10.1016/j.scitotenv.2017.06.057.
    [83] NING C, MUELLER G M, EGERTON-WARBURTON L M, et al. Diversity and enzyme activity of ectomycorrhizal fungal communities following nitrogen fertilization in an urban-adjacent pine plantation[J]. Forests, 2018, 9(3):99. doi:10.3390/f9030099.
    [84] CUI J, WANG J J, XU J, et al. Changes in soil bacterial communities in an evergreen broad-leaved forest in east China following 4 years of nitrogen addition[J]. J Soil Sediment, 2017, 17(8):2156-2164. doi:10.1007/s11368-017-1671-y.
    [85] NIE Y X, WANG M C, ZHANG W, et al. Ammonium nitrogen content is a dominant predictor of bacterial community composition in an acidic forest soil with exogenous nitrogen enrichment[J]. Sci Total Environ, 2018, 624:407-415. doi:10.1016/j.scitotenv.2017.12.142.
    [86] LIU L, ZHANG T, GILLIAM F S, et al. Interactive effects of nitrogen and phosphorus on soil microbial communities in a tropical forest[J]. PLoS One, 2013, 8(4):e61188. doi:10.1371/journal.pone.0061188.
    [87] KOU L, ZHANG X Y, WANG H M, et al. Nitrogen additions inhibit nitrification in acidic soils in a subtropical pine plantation:Effects of soil pH and compositional shifts in microbial groups[J]. J For Res, 2019, 30(2):669-678. doi:10.1007/s11676-018-0645-2.
    [88] WANG X Y, WEN T. Effects of simulated nitrogen deposition on soil nitrogen transformation in artificial Korean pine of Xiaoxing'anling region[J]. Chin J Soil Sci, 2017, 48(3):604-610. doi:10.19336/j.cnki. trtb.2017.03.14. 王小云, 温腾. 模拟氮沉降对小兴安岭地区人工红松林土壤氮转化的影响[J]. 土壤通报, 2017, 48(3):604-610. doi:10.19336/j.cnki. trtb.2017.03.14.
    [89] ALLISON S D, VITOUSEK P M. Responses of extracellular enzymes to simple and complex nutrient inputs[J]. Soil Biol Biochem, 2005, 37(5):937-944. doi:10.1016/j.soilbio.2004.09.014.
    [90] ZHENG M H, LI D J, LU X, et al. Effects of phosphorus addition with and without nitrogen addition on biological nitrogen fixation in tropical legume and non-legume tree plantations[J]. Biogeochemistry, 2016, 131:65-76. doi:10.1007/s10533-016-0265-x.
    [91] DONG W Y, ZHANG X Y, LIU X Y, et al. Responses of soil microbial communities and enzyme activities to nitrogen and phosphorus additions in Chinese fir plantations of subtropical China[J]. Biogeosciences, 2015, 12:5537-5546. doi:10.5194/bg-12-5537-2015.
    [92] JING X, CHEN X, TANG M, et al. Nitrogen deposition has minor effect on soil extracellular enzyme activities in six Chinese forests[J]. Sci Total Environ, 2017, 607-608:806-815. doi:10.1016/j.scitotenv. 2017.07.060.
    [93] WANG S H, MORI T, MO J M, et al. The responses of carbon-and nitrogen-acquiring enzymes to nitrogen and phosphorus additions in two plantations in southern China[J]. J For Res, 2019. doi:10.1007/s11676-019-00905-0.
    [94] XU G L, MO J M, ZHOU G Y. Responses of soil fauna biomass to N deposition in three forests in subtropical China[J]. Zool Res, 2005, 26(6):609-615. doi:10.3321/j.issn:0254-5853.2005.06.006. 徐国良, 莫江明, 周国逸. 氮沉降对三种林型土壤动物群落生物量的影响[J]. 动物学研究, 2005, 26(6):609-615. doi:10.3321/j.issn:0254-5853.2005.06.006.
    [95] XU G L, MO J M, ZHOU G Y, et al. Preliminary response of soil fauna to simulated N deposition in three typical subtropical forests[J]. Pedo-sphere, 2006, 16(5):596-601. doi:10.1016/S1002-0160(06)60093-3.
    [96] XU G L, MO J M, FU S L, et al. Response of soil fauna to simulated nitrogen deposition:A nursery experiment in subtropical China[J]. J Environ Sci, 2007, 19(5):603-609. doi:10.1016/S1001-0742(07)60100-4.
    [97] ZHOU D Y, BU D R, GE Z W, et al. Effects of nitrogen addition on soil fauna in poplar plantation with different ages in a coastal area of eastern China[J]. Chin J Ecol, 2015, 34(9):2553-2560. 周丹燕, 卜丹蓉, 葛之葳, 等. 氮添加对沿海不同林龄杨树人工林土壤动物群落的影响[J]. 生态学杂志, 2015, 34(9):2553-2560.
    [98] BIAN H X, GENG Q H, XIAO H R, et al. Fine root biomass mediates soil fauna community in response to nitrogen addition in poplar planta-tions (Populus deltoids) on the east coast of China[J]. Forests, 2019, 10:122. doi:10.3390/f10020122.
    [99] ZHAO J, WANG F M, LI J, et al. Effects of experimental nitrogen and/or phosphorus additions on soil nematode communities in a secondary tropical forest[J]. Soil Biol Biochem, 2014, 75:1-10. doi:10.1016/j. soilbio.2014.03.019.
    [100] FU X L, GUO D L, WANG H M, et al. Differentiating between root-and leaf-litter controls on the structure and stability of soil micro-food webs[J]. Soil Biol Biochem, 2017, 113:192-200. doi:10.1016/j. soilbio.2017.06.013.
    [101] CHENG Y Y, SUN T, WANG Q K, et al. Effects of simulated nitrogen deposition on temperate forest soil nematode communities and their metabolic footprints[J]. Acta Ecol Sin, 2018, 38(2):475-484. doi:10. 5846/stxb201606231225. 程云云, 孙涛, 王清奎, 等. 模拟氮沉降对温带森林土壤线虫群落组成和代谢足迹的影响[J]. 生态学报, 2018, 38(2):475-484. doi:10.5846/stxb201606231225.
    [102] LIN H, HE Z H, HAO J W, et al. Effect of N addition on home-field advantage of litter decomposition in subtropical forests[J]. For Ecol Manage, 2017, 398:216-225. doi:10.1016/j.foreco.2017.05.015.
    [103] ZHUANG H F, SUN Y, GU J C, et al. Effects of nitrogen addition on soil fauna communities in Larix gmelinii and Fraxinus mandshurica plantations[J]. Biodiv Sci, 2010, 18(4):390-397. doi:10.3724/SP.J. 1003.2010.390. 庄海峰, 孙玥, 谷加存, 等. 施氮肥对落叶松和水曲柳人工林土壤动物群落的影响[J]. 生物多样性, 2010, 18(4):390-397. doi:10. 3724/SP.J.1003.2010.390.
    [104] SHAO Y H, ZHANG W X, EISENHAUER N, et al. Nitrogen depo-sition cancels out exotic earthworm effects on plant-feeding nematode communities[J]. J Anim Ecol, 2017, 86(4):708-717. doi:10.1111/1365-2656.12660.
    [105] GAO Q, HASSELQUIST N J, PALMROTH S, et al. Short-term response of soil respiration to nitrogen fertilization in a subtropical evergreen forest[J]. Soil Biol Biochem, 2014, 76:297-300. doi:10. 1016/j.soilbio.2014.04.020.
    [106] ZHOU L Y, ZHOU X H, ZHANG B C, et al. Different responses of soil respiration and its components to nitrogen addition among biomes:A meta-analysis[J]. Glob Change Biol, 2014, 20(7):2332-2343. doi:10.1111/gcb.12490.
    [107] FAN H B, WU J P, LIU W F, et al. Nitrogen deposition promotes ecosystem carbon accumulation by reducing soil carbon emission in a subtropical forest[J]. Plant Soil, 2014, 379(1/2):361-371. doi:10. 1007/s11104-014-2076-y.
    [108] MO J M, ZHANG W, ZHU W X, et al. Response of soil respiration to simulated N deposition in a disturbed and a rehabilitated tropical forest in southern China[J]. Plant Soil, 2007, 296(1/2):125-135. doi:10. 1007/s11104-007-9303-8.
    [109] ZHONG Y Q W, YAN W M, SHANGGUAN Z P. The effects of nitrogen enrichment on soil CO2 fluxes depending on temperature and soil properties[J]. Glob Ecol Biogeogr, 2016, 25(4):475-488. doi:10.1111/geb.12430.
    [110] TIAN P, ZHANG J B, CAI Z C, et al. Different response of CO2 and N2O fluxes to N deposition with seasons in a temperate forest in northeastern China[J]. J Soil Sediment, 2018, 18(5):1821-1831. doi:10.1007/s11368-018-1919-1.
    [111] LU M, ZHOU X H, LUO Y Q, et al. Minor stimulation of soil carbon storage by nitrogen addition:A meta-analysis[J]. Agric Ecosyst Environ, 2011, 140(1/2):234-244. doi:10.1016/j.agee.2010.12.010.
    [112] WANG Q K, ZHANG W D, SUN T, et al. N and P fertilization reduced soil autotrophic and heterotrophic respiration in a young Cunninghamia lanceolata forest[J]. Agric For Meteorol, 2017, 232:66-73. doi:10.1016/j.agrformet.2016.08.007.
    [113] SUN Z Z, LIU L L, MA Y C, et al. The effect of nitrogen addition on soil respiration from a nitrogen-limited forest soil[J]. Agric For Meteorol, 2014, 197:103-110. doi:10.1016/j.agrformet.2014.06.010.
    [114] DU Y H, GUO P, LIU J Q, et al. Different types of nitrogen deposi-tion show variable effects on the soil carbon cycle process of temperate forests[J]. Glob Change Biol, 2014, 20(10):3222-3228. doi:10.1111/gcb.12555.
    [115] PENG Y, CHEN G S, CHEN G T, et al. Soil biochemical responses to nitrogen addition in a secondary evergreen broad-leaved forest ecosystem[J]. Sci Rep, 2017, 7:2783. doi:10.1038/s41598-017-03044-w.
    [116] DENG Q, ZHOU G, LIU J, et al. Responses of soil respiration to elevated carbon dioxide and nitrogen addition in young subtropical forest ecosystems in China[J]. Biogeosciences, 2010, 7:315-328. doi:10.5194/bg-7-315-2010.
    [117] DALAL R C, WANG W J, ROBERTSON G P, et al. Nitrous oxide emission from Australian agricultural lands and mitigation options:A review[J]. Aust J Soil Res, 2003, 41(2):165-195. doi:10.1071/SR02064.
    [118] LIU L L, GREAVER T L. A review of nitrogen enrichment effects on three biogenic GHGs:The CO2 sink may be largely offset by stimu-lated N2O and CH4 emission[J]. Ecol Lett, 2009, 12(10):1103-1117. doi:10.1111/j.1461-0248.2009.01351.x.
    [119] CHEN H, GURMESA G A, ZHANG W, et al. Nitrogen saturation in humid tropical forests after 6 years of nitrogen and phosphorus addition:Hypothesis testing[J]. Funct Ecol, 2016, 30(2):305-313. doi:10.1111/1365-2435.12475.
    [120] ZHENG M H, ZHANG T, LIU L, et al. Effects of nitrogen and phosphorus additions on nitrous oxide emission in a nitrogen-rich and two nitrogen-limited tropical forests[J]. Biogeosciences, 2016, 13:3503-3517. doi:10.5194/bg-13-3503-2016.
    [121] FANG H J, YU G R, CHENG S L, et al. Nitrogen-15 signals of leaf-litter-soil continuum as a possible indicator of ecosystem nitrogen saturation by forest succession and N loads[J]. Biogeochemistry, 2011, 102(1/2/3):251-263. doi:10.1007/s10533-010-9438-1.
    [122] ZHANG W, ZHU X, LUO Y, et al. Responses of nitrous oxide emissions to nitrogen and phosphorus additions in two tropical plantations with N-fixing vs. non-N-fixing tree species[J]. Biogeo-sciences, 2014, 11:4941-4951. doi:10.5194/bg-11-4941-2014.
    [123] WANG Y S, CHENG S L, FANG H J, et al. Simulated nitrogen deposition reduces CH4 uptake and increases N2O emission from a subtropical plantation forest soil in southern China[J]. PLoS One, 2014, 9(4):e93571. doi:10.1371/journal.pone.0093571.
    [124] LI X Y, CHENG S L, FANG H J, et al. The contrasting effects of deposited NH4+ and NO3- on soil CO2, CH4 and N2O fluxes in a sub-tropical plantation, southern China[J]. Ecol Eng, 2015, 85:317-327. doi:10.1016/j.ecoleng.2015.10.003.
    [125] ZHANG W, ZHU X M, LIU L, et al. Large difference of inhibitive effect of nitrogen deposition on soil methane oxidation between plantations with N-fixing tree species and non-N-fixing tree species[J]. J Geophys Res:Biogeosci, 2012, 117:G00N16. doi:10.1029/2012JG 002094.
    [126] XIE D N, SI G Y, ZHANG T, et al. Nitrogen deposition increases N2O emission from an N-saturated subtropical forest in southwest China[J]. Environ Pollut, 2018, 243:1818-1824. doi:10.1016/j.envpol.2018.09. 113.
    [127] ZHU J, MULDER J, BAKKEN L, et al. The importance of denitri-fication for N2O emissions from an N-saturated forest in SW China:Results from in situ 15N labeling experiments[J]. Biogeochemistry, 2013, 116(1/2/3):103-117. doi:10.1007/s10533-013-9883-8.
    [128] TANG W G, CHEN D X, PHILLIPS O L, et al. Effects of long-term increased N deposition on tropical montane forest soil N2 and N2O emissions[J]. Soil Biol Biochem, 2018, 126:194-203. doi:10.1016/j. soilbio.2018.08.027.
    [129] XU X K, HAN L, LUO X B, et al. Effects of nitrogen addition on dissolved N2O and CO2, dissolved organic matter, and inorganic nitrogen in soil solution under a temperate old-growth forest[J]. Geoderma, 2009, 151(3/4):370-377. doi:10.1016/j.geoderma.2009. 05.008.
    [130] GENG S C, CHEN Z J, HAN S J, et al. Rainfall reduction amplifies the stimulatory effect of nitrogen addition on N2O emissions from a temperate forest soil[J]. Sci Rep, 2017, 7:43329. doi:10.1038/srep 43329.
    [131] BAI E, LI W, LI S L, et al. Pulse increase of soil N2O emission in response to N addition in a temperate forest on Mt Changbai, north-east China[J]. PLoS One, 2014, 9(7):e102765. doi:10.1371/journal. one.0102765.
    [132] CHENG S L, WANG L, FANG H J, et al. Nonlinear responses of soil nitrous oxide emission to multi-level nitrogen enrichment in a tempe-rate needle-broadleaved mixed forest in northeast China[J]. Catena, 2016, 147:556-563. doi:10.1016/j.catena.2016.08.010.
    [133] CHEN Z J, SETÄLÄ H, GENG S C, et al. Nitrogen addition impacts on the emissions of greenhouse gases depending on the forest type:A case study in Changbai Mountain, northeast China[J]. J Soil Sedi-ment, 2017, 17(1):23-34.doi:10.1007/s11368-016-1481-7.
    [134] SONG L, TIAN P, ZHANG J B, et al. Effects of three years of simulated nitrogen deposition on soil nitrogen dynamics and green-house gas emissions in a Korean pine plantation of northeast China[J]. Sci Total Environ, 2017, 609:1303-1311. doi:10.1016/j.scitotenv. 2017.08.017.
    [135] SONG L, ZHANG J B, MÜLLER C, et al. Responses of soil N trans-formations and N loss to three years of simulated N deposition in a temperate Korean pine plantation in northeast China[J]. Appl Soil Ecol, 2019, 137:49-56. doi:10.1016/j.apsoil.2019.01.008.
    [136] XU K, WANG C M, YANG X T. Five-year study of the effects of simulated nitrogen deposition levels and forms on soil nitrous oxide emissions from a temperate forest in northern China[J]. PLoS One, 2017, 12(12):e0189831. doi:10.1371/journal.pone.0189831.
    [137] ZHANG W, MO J M, ZHOU G Y, et al. Methane uptake responses to nitrogen deposition in three tropical forests in southern China[J]. J Geophys Res Atmos, 2008, 113:D11116. Doi:10.1029/2007JD009195.
    [138] XU X K, HAN L, LUO X B, et al. Synergistic effects of nitrogen amendments and ethylene on atmospheric methane uptake under a temperate old-growth forest[J]. Adv Atmos Sci, 2011, 28(4):843-854. doi:10.1007/s00376-010-0071-7.
    [139] WANG Y S, CHENG S L, FANG H J, et al. Relationships between ammonia-oxidizing communities, soil methane uptake and nitrous oxide fluxes in a subtropical plantation soil with nitrogen enrichment[J]. Eur J Soil Biol, 2016, 73:84-92. doi:10.1016/j.ejsobi.2016.01.008.
    [140] ZHENG M H, ZHANG T, LIU L, et al. Effects of nitrogen and phosphorus additions on soil methane uptake in disturbed forests[J]. J Geophys Res Biogeosci, 2016, 121(12):3089-3100. doi:10.1002/2016JG003476.
    [141] YANG X T, WANG C M, XU K. Response of soil CH4 fluxes to stimulated nitrogen deposition in a temperate deciduous forest in northern China:A 5-year nitrogen addition experiment[J]. Eur J Soil Biol, 2017, 82:43-49. doi:10.1016/j.ejsobi.2017.08.004.
    [142] GENG J, CHENG S L, FANG H J, et al. Soil nitrate accumulation explains the nonlinear responses of soil CO2 and CH4 fluxes to nitrogen addition in a temperate needle-broadleaved mixed forest[J]. Ecol Indic, 2017, 79:28-36. doi:10.1016/j.ecolind.2017.03.054.
    [143] CLEVELAND C C, TOWNSEND A R, SCHIMEL D S, et al. Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems[J]. Glob Biogeochem Cy, 1999, 13(2):623-645. doi:10. 1029/1999GB900014.
    [144] VITOUSEK P M, MENGE D N L, REED S C, et al. Biological nitrogen fixation:Rates, patterns and ecological controls in terrestrial ecosystems[J]. Philos Trans R Soc Lond B Biol Sci, 2013, 368(1621):20130119. doi:10.1098/rstb.2013.0119.
    [145] GALLOWAY J N, TOWNSEND A R, ERISMAN J W, et al. Trans-formation of the nitrogen cycle:Recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878):889-892. doi:10.1126/science.1136674.
    [146] SULLIVAN B W, SMITH W K, TOWNSEND A R, et al. Spatially robust estimates of biological nitrogen (N) fixation imply substantial human alteration of the tropical N cycle[J]. Proc Natl Acad Sci USA, 2014, 111(22):8101-8106. doi:10.1073/pnas.1320646111.
    [147] REED S C, CLEVELAND C C, TOWNSEND A R. Functional ecology of free-living nitrogen fixation:A contemporary perspective[J]. Annu Rev Ecol Evol Syst, 2011, 42(1):489-512. doi:10.1146/annurev-ecolsys-102710-145034.
    [148] CREW T E, FARRIONTON H, VITOUSEK P M. Changes in asymbiotic, heterotrophic nitrogen fixation on leaf litter of metrosi-deros polymorpha with long-term ecosystem development in Hawaii[J]. Ecosystems, 2000, 3(4):386-395. doi:10.1007/s100210000034.
    [149] ZECKRISSON O, DELUCA T H, NILSSON M C, et al. Nitrogen fixation increases with successional age in boreal forests[J]. Ecology, 2004, 85(12):3327-3334. doi:10.1890/04-0461.
    [150] BARRON A R, WURZBURGER N, BELLENGER J P, et al. Molyb-denum limitation of asymbiotic nitrogen fixation in tropical forest soils[J]. Nat Geosci, 2009, 2(1):42-45. doi:10.1038/ngeo366.
    [151] CUSACK D F, SILVER W, MICOWELL W H. Biological nitrogen fixation in two tropical forests:Ecosystem-level patterns and effects of nitrogen fertilization[J]. Ecosystems, 2009, 12(8):1299-1315. doi:10. 1007/s10021-009-9290-0.
    [152] LIU X J, ZHANG Y, HAN W X, et al. Enhanced nitrogen deposition over China[J]. Nature, 2013, 494(7438):459-462. doi:10.1038/nature11917.
    [153] ZHENG M H, CHEN H, LI D J, et al. Biological nitrogen fixation and its response to nitrogen input in two mature tropical plantations with and without legume trees[J]. Biol Fert Soils, 2016, 52(5):665-674. doi:10.1007/s00374-016-1109-5.
    [154] ZHENG M H, ZHANG W, LUO Y Q, et al. Different responses of asymbiotic nitrogen fixation to nitrogen addition between disturbed and rehabilitated subtropical forests[J]. Sci Total Environ, 2017, 601-602:1505-1512. doi:10.1016/j.scitotenv.2017.06.036.
    [155] HEDIN L O, BROOKSHIRE E N J, MENGE D N L, et al. The nitrogen paradox in tropical forest ecosystems[J]. Annu Rev Ecol Evol Syst, 2009, 40(1):613-635. doi:10.1146/annurev.ecolsys.37.091305.110246.
    [156] WANG Q, WANG J L, LI Y Z, et al. Influence of nitrogen and pho-sphorus additions on N2-fixation activity, abundance, and composition of diazotrophic communities in a Chinese fir plantation[J]. Sci Total Environ, 2018, 619-620:1530-1537. doi:10.1016/j.scitotenv.2017. 10.064.
    [157] TANG Y Q, YU G R, ZHANG X Y, et al. Different strategies for regulating free-living N2 fixation in nutrient-amended subtropical and temperate forest soils[J]. Appl Soil Ecol, 2019, 136:21-29. doi:10. 1016/j.apsoil.2018.12.014.
    [158] MARKHAM J H, ZEKVELD C. Nitrogen fixation makes biomass allocation to roots independent of soil nitrogen supply[J]. Can J Bot, 2007, 85(9):787-793. doi:10.1139/B07-075.
    [159] LU M, YANG Y H, LUO Y Q, et al. Responses of ecosystem nitrogen cycle to nitrogen addition:A meta-analysis[J]. New Phytol, 2011, 189(4):1040-1050. doi:10.1111/j.1469-8137.2010.03563.x.
    [160] LIU W J, YU L F, ZHANG T, et al. In situ 15N labeling experiment reveals different long-term responses to ammonium and nitrate inputs in N-saturated subtropical forest[J]. J Geophys Res Biogeosci, 2017, 122(9):2251-2264. doi:10.1002/2017JG003963.
    [161] FANG Y T, ZHU W X, GUNDERSEN P, et al. Large loss of dissolved organic nitrogen from nitrogen-saturated forests in subtropical China[J]. Ecosystems, 2009, 12(1):33-45. doi:10.1007/s10021-008-9203-7.
    [162] GURMESA G A, LU X K, GUNDERSEN P, et al. High retention of 15N-labeled nitrogen deposition in a nitrogen saturated old-growth tropical forest[J]. Glob Change Biol, 2016, 22(11):3608-3620. doi:10.1111/gcb.13327.
    [163] BAO X, BAO X X, LIU X C. Effects of nitrogen deposition on soil nitrogen mineralization of Betula platyphylla forest in Daxing'an Mountains[J]. J NE For Univ, 2015, 43(7):78-83. doi:10.3969/j.issn. 1000-5382.2015.07.018. 包翔, 包秀霞, 刘星岑. 施氮量对大兴安岭白桦次生林土壤氮矿化的影响[J]. 东北林业大学学报, 2015, 43(7):78-83. doi:10.3969/j. issn.1000-5382.2015.07.018.
    [164] GAO W L, KOU L, ZHANG J B, et al. Ammonium fertilization causes a decoupling of ammonium cycling in a boreal forest[J]. Soil Biol Biochem, 2016, 101:114-123. doi:10.1016/j.soilbio.2016.07.007.
    [165] TIAN P, ZHANG J B, MÜLLER C, et al. Effects of six years of simulated N deposition on gross soil N transformation rates in an old-growth temperate forest[J]. J For Res, 2018, 29(3):647-656. doi:10. 1007/s11676-017-0484-6.
    [166] SUN J F, PENG B, LI W, et al. Effects of nitrogen addition on potential soil nitrogen-cycling processes in a temperate forest eco-system[J]. Soil Sci, 2016, 181(1):29-38. doi:10.1097/SS.0000000000000134.
    [167] ZHAO Y, ZHANG C, ZHAO H F, et al. Effects of N and P addition on soil nitrogen mineralization in a subtropical evergreen broad-leaved forest[J]. Chin J Ecol, 2013, 32(7):1690-1697. 赵阳, 张驰, 赵竑绯, 等. 氮磷添加对亚热带常绿阔叶林土壤氮素矿化的影响[J]. 生态学杂志, 2013, 32(7):1690-1697.
    [168] CHEN H, ZHANG W, GURMESA G A, et al. Phosphorus addition affects soil nitrogen dynamics in a nitrogen-saturated and two nitrogen-limited forests[J]. Eur J Soil Sci, 2017, 68(4):472-479. doi:10.1111/ejss.12428.
    [169] GAO W L, KOU L, YANG H, et al. Are nitrate production and retention processes in subtropical acidic forest soils responsive to ammonium deposition?[J]. Soil Biol Biochem, 2016, 100:102-109. doi:10.1016/j.soilbio.2016.06.002.
    [170] GAO W L, KOU L, ZHANG J B, et al. Enhanced deposition of nitrate alters microbial cycling of N in a subtropical forest soil[J]. Biol Fert Soils, 2016, 52(7):977-986. doi:10.1007/s00374-016-1134-4.
    [171] ZHOU K J, LU X K, MORI T, et al. Effects of long-term nitrogen deposition on phosphorus leaching dynamics in a mature tropical forest[J]. Biogeochemistry, 2018, 138(2):215-224. doi:10.1007/s10533-018-0442-1.
    [172] YANG K, ZHU J J, GU J C, et al. Changes in soil phosphorus fractions after 9 years of continuous nitrogen addition in a Larix gmelinii plantation[J]. Ann For Sci, 2015, 72(4):435-442. doi:10. 1007/s13595-014-0444-7.
    [173] FAN Y X, ZHONG X J, LIN F, et al. Responses of soil phosphorus fractions after nitrogen addition in a subtropical forest ecosystem:Insights from decreased Fe and Al oxides and increased plant roots[J]. Geoderma, 2019, 337:246-255. doi:10.1016/j.geoderma.2018.09.028.
    [174] WANG Q K, WANG S L, LIU Y X. Responses to N and P fertili-zation in a young Eucalyptus dunnii plantation:Microbial properties, enzyme activities and dissolved organic matter[J]. Appl Soil Ecol, 2008, 40(3):484-490. doi:10.1016/j.apsoil.2008.07.003.
    [175] LU X K, MO J M, GILLIAM F S, et al. Nitrogen addition shapes soil phosphorus availability in two reforested tropical forests in southern China[J]. Biotropica, 2012, 44(3):302-311. doi:10.1111/j.1744-7429. 2011.00831.x.
    [176] LI Y, NIU S L, YU G R. Aggravated phosphorus limitation on biomass production under increasing nitrogen loading:A meta-analysis[J]. Glob Change Biol, 2016, 22(2):934-943. doi:10.1111/gcb.13125.
    [177] BRAUN S, THOMAS V F D, QUIRING R, et al. Does nitrogen deposition increase forest production? The role of phosphorus[J]. Environ Pollut, 2010, 158(6):2043-2052. doi:10.1016/j.envpol.2009. 11.030.
    [178] LONG M, WU H H, SMITH M D, et al. Nitrogen deposition promotes phosphorus uptake of plants in a semi-arid temperate grassland[J]. Plant Soil, 2016, 408(1/2):475-484. doi:10.1007/s11104-016-3022-y.
    [179] WANG M, MEAGHAN T M, MOORE T R. Nutrient resorption of two evergreen shrubs in response to long-term fertilization in a bog[J]. Oecologia, 2014, 174(2):365-377. doi:10.1007/s00442-013-2784-7.
    [180] GONZALES K, RUTH Y. Nitrogen-phosphorous interactions in young northern hardwoods indicate P limitation:Foliar concentrations and resorption in a factorial N by P addition experiment[J]. Oecologia, 2019, 189(3):829-840. doi:10.1007/s00442-019-04350-y.
    [181] SEE C R, YANAI R D, FISK M C, et al. Soil nitrogen affects phosphorus recycling:Foliar resorption and plant-soil feedbacks in a northern hardwood forest[J]. Ecology, 2015, 96(9):2488-2498. doi:10.1890/15-0188.1.
    [182] ZHENG M H, HUANG J, CHEN H, et al. Effects of nitrogen and phosphorus addition on soil phosphatase activity in different forest types[J]. Acta Ecol Sin, 2015, 35(20):6703-6710. doi:10.5846/stxb 201405120970. 郑棉海, 黄娟, 陈浩, 等. 氮、磷添加对不同林型土壤磷酸酶活性的影响[J]. 生态学报, 2015, 35(20):6703-6710. doi:10.5846/stxb 201405120970.
    [183] PARRON L M, BUSTAMANTE M M C, MARKEWITZ D. Fluxes of nitrogen and phosphorus in a gallery forest in the Cerrado of central Brazil[J]. Biogeochemistry, 2011, 105(1/2/3):89-104. doi:10.1007/s10533-010-9537-z.
    [184] SMITH S W, WOODIN S J, PAKEMAN R J, et al. Root traits predict decomposition across a landscape-scale grazing experiment[J]. New Phytol, 2014, 203(3):851-862. doi:10.1111/nph.12845.
    [185] ZHANG Y T, LI J M, LI X, et al. Effects of simulated nitrogen deposition on decomposition and nutrient release of leaf litter of Picea schrenkiana[J]. Arid Zone Res, 2016, 33(5):966-973. doi:10.13866/j.azr.2016.05.08. 张毓涛, 李吉玫, 李翔, 等. 模拟氮沉降对天山云杉凋落叶分解及其养分释放的影响[J]. 干旱区研究, 2016, 33(5):966-973. doi:10. 13866/j.azr.2016.05.08.
    [186] YAO X. Effects of nitrogen addition on litter decomposition in artificial Pinus tabulaeformis forests[D]. Yangling:Northwest Agriculture and Forest University, 2017:8. 姚旭. 氮添加对人工油松林叶凋落物分解的影响[D]. 杨凌:西北农林科技大学, 2017:8.
    [187] LI X F, ZHENG X B, HAN S J, et al. Effects of nitrogen additions on nitrogen resorption and use efficiencies and foliar litterfall of six tree species in a mixed birch and poplar forest, northeastern China[J]. Can J For Res, 2010, 40(11):2256-2261. doi:10.1139/X10-167.
    [188] ZHOU S X, XIAO Y X, XIANG Y B, et al. Effects of simulated nitrogen deposition on the substrate quality of foliar litter in a natural evergreen broad-leaved forest in the Rainy Area of western China[J]. Acta Ecol Sin, 2016, 36(22):7428-7435. doi:10.5846/stxb201601080054. 周世兴, 肖永翔, 向元彬, 等. 模拟氮沉降对华西雨屏区天然常绿阔叶林凋落叶分解过程中基质质量的影响[J]. 生态学报, 2016, 36(22):7428-7435. doi:10.5846/stxb201601080054.
    [189] ZHANG W D, CHAO L, YANG Q P, et al. Litter quality mediated nitrogen effect on plant litter decomposition regardless of soil fauna presence[J]. Ecology, 2016, 97(10):2834-2843. doi:10.1002/ecy. 1515.
    [190] FANG X, LIU J X, ZHANG D Q, et al. Effects of precipitation change and nitrogen addition on organic carbon mineralization and soil microbial carbon of the forest soils in Dinghushan, southeastern China[J]. Chin J Appl Environ Biol, 2012, 18(4):531-538. doi:10. 3724/SP.J.1145.2012.00531. 方熊, 刘菊秀, 张德强, 等. 降水变化、氮添加对鼎湖山主要森林土壤有机碳矿化和土壤微生物碳的影响[J]. 应用与环境生物学报, 2012, 18(4):531-538. doi:10.3724/SP.J.1145.2012.00531.
    [191] TIE L H, FU R, ZHANG S B, et al. Effects of simulated nitrogen and sulfur deposition on litter decomposition rate in an evergreen broad-leaved forest in the rainy area of western China[J]. Chin J Appl Ecol, 2018, 29(7):2243-2250. doi:10.13287/j.1001-9332.201807.012. 铁烈华, 符饶, 张仕斌, 等. 模拟氮、硫沉降对华西雨屏区常绿阔叶林凋落叶分解速率的影响[J]. 应用生态学报, 2018, 29(7):2243-2250. doi:10.13287/j.1001-9332.201807.012.
    [192] LI Y Y, WANG Z W, SUN T. Response of fine root decomposition to long-term nitrogen addition in the temperate forest[J]. Bull Bot Res, 2017, 37(6):848-854. doi:10.7525/j.issn.1673-5102.2017.06.007. 李媛媛, 王正文, 孙涛. 氮添加对温带森林细根长期分解的影响[J]. 植物研究, 2017, 37(6):848-854. doi:10.7525/j.issn.1673-5102. 2017.06.007.
    [193] CHEN X, ZHOU M, WEI J S, et al. Effects of simulated nitrogen deposition on litter decomposition in Larix gmelinii forest[J]. Ecol Environ Sci, 2013, 22(9):1496-1503. doi:10.3969/j.issn.1674-5906. 2013.09.007. 陈翔, 周梅, 魏江生, 等. 模拟氮沉降对兴安落叶松林凋落物分解的影响[J]. 生态环境学报, 2013, 22(9):1496-1503. doi:10.3969/j.issn.1674-5906.2013.09.007.
    [194] MO J M, XUE J H, FANG Y T. Litter decomposition and its responses to simulated N deposition for the major plants of Dinghushan forests in subtropical China[J]. Acta Ecol Sin, 2004, 24(7):1413-1420. doi:10.3321/j.issn:1000-0933.2004.07.015. 莫江明, 薛璟花, 方运霆. 鼎湖山主要森林植物凋落物分解及其对N沉降的响应[J]. 生态学报, 2004, 24(7):1413-1420. doi:10.3321/j.issn:1000-0933.2004.07.015.
    [195] ZHOU S X, HUANG C D, XIANG Y B, et al. Effects of simulated nitrogen deposition on lignin and cellulose degradation of foliar litter in natural evergreen broad-leaved forest in Rainy Area of western China[J]. Chin J Appl Ecol, 2016, 27(5):1368-1374. doi:10.13287/j. 1001-9332.201605.004. 周世兴, 黄从德, 向元彬, 等. 模拟氮沉降对华西雨屏区天然常绿阔叶林凋落物木质素和纤维素降解的影响[J]. 应用生态学报, 2016, 27(5):1368-1374. doi:10.13287/j.1001-9332.201605.004.
    [196] HOLOPAINEN J K, GERSHENZON J. Multiple stress factors and the emission of plant VOCs[J]. Trends Plant Sci, 2010, 15(3):176-184. doi:10.1016/j.tplants.2010.01.006.
    [197] LORETO F, SCHNITZLER J P. Abiotic stresses and induced BVOCs[J]. Trends Plant Sci, 2010, 15(3):154-166. doi:10.1016/j.tplants. 2009.12.006.
    [198] HUANG J, MO J M, KONG G H, et al. Research perspective for the effects of nitrogen deposition on biogenic volatile organic compounds[J]. Acta Ecol Sin, 2011, 31(21):6616-6623. 黄娟, 莫江明, 孔国辉, 等. 植物源挥发性有机物对氮沉降响应研究展望[J]. 生态学报, 2011, 31(21), 6616-6623.
    [199] HUANG J, LU X K, MO J M, et al. Effects of simulated N deposition on carbonyl compounds released by nursery plants[C]//Proceedings of the Annual Conference of Chinese Society of Environmental Sciences. Chengdu:China Environment Press, 2014:6867-6873. 黄娟, 鲁显楷, 莫江明, 等. 模拟N沉降对苗圃植物排放羰基化合物的影响[C]//中国环境科学学会学术年会论文集. 成都:中国环境出版社, 2014:6867-6873.
    [200] HUANG J, MO J M, LU X K, et al. The effect of simulated nitrogen deposition on the emission of carbonyl compounds from Ormosia pinnata and Cinnamomum burmannii[J/OL]. Expert Opin Environ Biol, 2016(S1):1-7. doi:10.4172/2325-9655.S1-004.
    [201] CHEN H, LI D J, GURMESA G A, et al. Effects of nitrogen deposi-tion on carbon cycle in terrestrial ecosystems of China:A meta-analysis[J]. Environ Pollut, 2015, 206:352-360. doi:10.1016/j.envpol.2015. 07.033.
    [202] RAINEY S M, NADELHOFFER K J, SILVER W L, et al. Effects of chronic nitrogen additions on understory species in a red pine plantation[J]. Ecol Appl, 1999, 9(3):949-957. doi:10.1890/1051-0761(1999) 009[0949:EOCNAO]2.0.CO;2.
    [203] BERG B, MATZNER E. Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems[J]. Environ Rev, 1997, 5(1):1-25. doi:10.1139/a96-017.
    [204] JANSSENS I A, DIELEMAN W, LUYSSAERT S, et al. Reduction of forest soil respiration in response to nitrogen deposition[J]. Nat Geosci, 2010, 3(5):315-322. doi:10.1038/ngeo844.
    [205] FANG H, MO J M, PENG S L, et al. Cumulative effects of nitrogen additions on litter decomposition in three tropical forests in southern China[J]. Plant Soil, 2007, 297(1/2):233-242. doi:10.1007/s11104-007-9339-9.
    [206] TEMPLER P H, MACK M C, CHAPIN F S Ⅲ, et al. Sinks for nitrogen inputs in terrestrial ecosystems:A meta-analysis of 15N tracer field studies[J]. Ecology, 2012, 93(8):1816-1829. doi:10.1890/11-1146.1.
    [207] LIU J, PENG B, XIA Z W, et al. Different fates of deposited NH4+ and NO3- in a temperate forest in northeast China:A 15N tracer study[J]. Glob Change Biol, 2017, 23(6):2441-2449. doi:10.1111/gcb.13533.
    [208] WANG A, ZHU W X, GUNDERSEN P, et al. Fates of atmospheric deposited nitrogen in an Asian tropical primary forest[J]. For Ecol Manage, 2018, 411:213-222. doi:10.1016/j.foreco.2018.01.029.
    [209] SHENG W P, YU G R, FANG H J, et al. Sinks for inorganic nitrogen deposition in forest ecosystems with low and high nitrogen deposition in China[J]. PLoS One, 2014, 9(2):e89322. doi:10.1371/journal.pone. 0089322.
    相似文献
    引证文献
引用本文

鲁显楷,莫江明,张炜,毛庆功,刘荣臻,王聪,王森浩,郑棉海,MORITaiki,毛晋花,张勇群,王玉芳,黄娟.模拟大气氮沉降对中国森林生态系统影响的研究进展[J].热带亚热带植物学报,2019,27(5):500~522

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-06-21
  • 最后修改日期:2019-08-20
  • 在线发布日期: 2019-09-30
文章二维码