Abstract:Human activities, such as combustion of fossil fuel, production and application of nitrogenous fertilizer, and intensive livestock production, have been accelerating the production and emission of reactive nitrogen (e.g., NH4+, NO3-), leading to elevated nitrogen (N) deposition at regional and global scales. Human interference with N cycle has gone beyond the safe operating space for humanity. China is one of the three regions with the highest N deposition in the world. High N deposition has threatened the health and safety of terrestrial ecosystems, which should be addressed urgently during the process of ecological civilization construction. The research history on simulated N deposition in China and world was reviewed, focused on how simulated N deposition affects forest ecosystems in China, including soil acidification, plant element chemistry, plant growth and diversity, soil microbial community and enzyme activities, soil fauna, greenhouse gas emissions, ecosystem N and phosphorus cycles, soil N transformation, ecosystem N fixation, litter decomposition, and ecosystem carbon sequestration. The atmospheric N deposition has been concerned since 2000s. In 2002, the first long-term forest ecosystem N manipulative experiments were established by South China Botanical Garden (SCBG) of the Chinese Academy of Sciences, which is playing a leading role in the field of nitrogen deposition and forest ecosystems in China. In 2013, SCBG, for the first time, designed a novel experiment with canopy addition of N (CAN) vs. understory addition of N (UAN) in China. Results from N manipulative experiments across China showed that continuing high N deposition greatly altered forest structure and functioning, threatening ecosystem health, especially in the south-central China. The main results are as follows:(1) There is a fertilization effect of N deposition in temperate and boreal forests, but there seem no positive effects on plant growth in N-rich tropical forests because of N saturation. (2) Excess N deposition can lead to soil acidification and nutrient imbalance. (3) Elevated N deposition has accelerated N cycling rate and its transformation process, but depressed ecosystem N fixation rate, and altered ecosystem P availability and cycling, litter decomposition process and greenhouse gas emissions. (4) High N deposition reduced understory plants diversity and changed the structure of soil microbial community. (5) Nitrogen deposition generally simulates aboveground vegetation C sequestration across China, but there remains uncertain on belowground soil C sequestration. (6) Tropical and subtropical forest ecosystems are non-ignorable N sinks, depending on the forms and fates of added N. (7) The effects of N deposition on forest ecosystems are variable, depending on ecosystem N status, land-use history, climate, and forest types and ages. Considering that there remain uncertainties on the long-term effects of N deposition in China, it is suggested that it is necessary to continue the present studies in a longer term, and to expand a network research among field sites along climate gradients. It would be further highlighted to explore how forest ecosystems respond and acclimate to long-term N inputs, to quantify belowground C and N sequestration, and to jointly consider multiple global change factors (e.g., climate warming, CO2 enrichment, changes in precipitation patterns), all of which are important for forest management and sustainable development in the future.