染色质重塑因子在植物发育过程的功能
作者:
基金项目:

广东省杰出青年基金项目(2016A030306047);广州市珠江科技新星项目(201610010138);国家自然科学基金项目(31672161)资助


Functions of ATP-dependent Chromatin Remodeling Factors in Plant Development
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [117]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    染色质重塑复合体(chromatin remodeling complexes)通过具有ATPase活性的亚基水解ATP释放能量,通过改变核小体"构象"(包括核小体重定位、核小体滑动和核小体替换等)而改变DNA的"可及性"(accessibility),进而影响特定的生理、生化过程。染色质重塑复合体最早在酵母中发现,生化分析表明其至少含有13个亚基。目前植物染色质重塑复合体的组成还未完全解析,但通过对其酵母同源亚基(染色质重塑因子)的研究可从侧面探究植物染色质重塑复合体的功能。同时,还着重讨论了近年来在植物染色质重塑因子研究上取得的结果,以期为植物染色质重塑的作用机制提供启示。

    Abstract:

    In eukaryotic cells, the ATP-dependent chromatin remodeling complexes utilize the energy of ATP to disrupt nucleosome DNA contacts, move nucleosomes along DNA, and remove or exchange nucleosomes. They thus make DNA/chromatin available to proteins that need to access DNA or histones directly during cellular processes. The first chromatin remodeling complex was found in yeast, containing at least 11 subunits by biochemical analysis. However, the chromatin remodeling complexes in plants are less known. The studies on plant chromatin remodeling factors were reviewed, which would provide insights into the involvement of plant chromatin remodeling in development.

    参考文献
    [1] LI B, CAREY M, WORKMAN J L. The role of chromatin during transcription[J]. Cell, 2007, 128(4):707-719. doi:10.1016/j.cell.2007. 01.015.
    [2] CLAPIER R, CAIRNS B R. The biology of chromatin remodeling complexes[J]. Annu Rev Biochem, 2009, 78(1):273-304. doi:10. 1146/annurev.biochem.77.062706.153223.
    [3] HARGREAVES D C, CRABTREE G R. ATP-dependent chromatin remodeling:Genetics, genomics and mechanisms[J]. Cell Res, 2011, 21(3):396-420. doi:10.1038/cr.2011.32.
    [4] SMITH C L, HOROWITZ-SCHERER R, FLANAGAN J F, et al. Structural analysis of the yeast SWI/SNF chromatin remodeling complex[J]. Nat Struct Biol, 2003, 10(2):141-145. doi:10.1038/nsb888.
    [5] EISEN J A, SWEDER K S, HANAWALT P C. Evolution of the SNF2 family of proteins:Subfamilies with distinct sequences and functions[J]. Nucl Acids Res, 1995, 23(14):2715-2723. doi:10.1093/nar/23. 14.2715.
    [6] KIDDER B L, PALMER S, KNOTT J G. SWI/SNF-brg1 regulates self-renewal and occupies core pluripotency-related genes in embryonic stem cells[J]. Stem Cells, 2009, 27(2):317-328. doi:10.1634/stem cells.2008-0710.
    [7] KASTEN M, SZERLONG H, ERDJUMENT-BROMAGE H, et al. Tandem bromodomains in the chromatin remodeler RSC recognize acetylated histone H3 Lys14[J]. EMBO J, 2004, 23(6):1348-1359. doi:10.1038/sj.emboj.7600143.
    [8] ZHOU Y G, GRUMMT I. The PHD finger/bromodomain of NoRC interacts with acetylated histone H4K16 and is sufficient for rDNA silencing[J]. Curr Biol, 2005, 15(15):1434-1438. doi:10.1016/j.cub. 2005.06.057.
    [9] BOYER L A, LATEK R R, PETERSON C L. The SANT domain:A unique histone-tail-binding module?[J]. Nat Rev Mol Cell Biol, 2004, 5(2):158-163. doi:10.1038/nrm1314.
    [10] THOMPSON P M, GOTOH T, KOK M, et al. CHD5, a new member of the chromodomain gene family, is preferentially expressed in the nervous system[J]. Oncogene, 2003, 22(7):1002-1011. doi:10.1038/sj. onc.1206211.
    [11] PRAY-GRANT M G, DANIEL J A, SCHIELTZ D, et al. Chd1 chromo-domain links histone H3 methylation with SAGA-and SLIK-dependent acetylation[J]. Nature, 2005, 433(7024):434-438. doi:10. 1038/nature03242.
    [12] FLANAGAN J F, MI L Z, CHRUSZCZ M, et al. Double chromo-domains cooperate to recognize the methylated histone H3 tail[J]. Nature, 2005, 438(7071):1181-1185. doi:10.1038/nature04290.
    [13] BAO Y H, SHEN X T. INO80 subfamily of chromatin remodeling complexes[J]. Mutat Res, 2007, 618(1/2):18-29. doi:10.1016/j.mrf mmm.2006.10.006.
    [14] CORONA D F V, TAMKUN J W. Multiple roles for ISWI in trans-cription, chromosome organization and DNA replication[J]. Biochim Biophys Acta, 2004, 1677(1/2/3):113-119. doi:10.1016/j.bbaexp. 2003.09.018.
    [15] WHITEHOUSE I, FLAUS A, CAIRNS B R, et al. Nucleosome mobilization catalysed by the yeast SWI/SNF complex[J]. Nature, 1999, 400(6746):784-787. doi:10.1038/23506.
    [16] PHELAN M L, SCHNITZLER G R, KINGSTON R E. Octamer transfer and creation of stably remodeled nucleosomes by human SWI-SNF and its isolated ATPases[J]. Mol Cell Biochem, 2000, 20(17):6380-6389. doi:10.1128/mcb.20.17.6380-6389.2000.
    [17] LORCH Y, ZHANG M C, KORNBERG R D. Histone octamer transfer by a chromatin-remodeling complex[J]. Cell, 1999, 96(3):389-392. doi:10.1016/s0092-8674(00)80551-6.
    [18] MIZUGUCHI G, SHEN X T, LANDRY J, et al. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex[J]. Science, 2004, 303(5656):343-348. doi:10.1126/science. 1090701.
    [19] PAPAMICHOS-CHRONAKIS M, WATANABE S, RANDO O J, et al. Global regulation of H2A.Z localization by the INO80 chromatin-remodeling enzyme is essential for genome integrity[J]. Cell, 2011, 144(2):200-213. doi:10.1016/j.cell.2010.12.021.
    [20] LUK E, RANJAN A, FITZGERALD P C, et al. Stepwise histone replacement by SWR1 requires dual activation with histone H2A.Z and canonical nucleosome[J]. Cell, 2010, 143(5):725-736. doi:10.1016/j. cell.2010.10.019.
    [21] JIN C Y, FELSENFELD G. Nucleosome stability mediated by histone variants H3.3 and H2A.Z[J]. Genes Dev, 2007, 21(12):1519-1529. doi:10.1101/gad.1547707.
    [22] JIN C Y, ZANG C Z, WEI G, et al. H3.3/H2A.Z double variant-containing nucleosomes mark ‘nucleosome-free regions’ of active promoters and other regulatory regions in the human genome[J]. Nat Genet, 2009, 41(8):941-945. doi:10.1038/ng.409.
    [23] KUMAR S V, WIGGE P A. H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis[J]. Cell, 2010, 140(1):136-147. doi:10.1016/j.cell.2009.11.006.
    [24] FITZGERALD D J, DELUCA C, BERGER I, et al. Reaction cycle of the yeast Isw2 chromatin remodeling complex[J]. EMBO J, 2004, 23(19):3836-3843. doi:10.1038/sj.emboj.7600364.
    [25] SAHA A, WITTMEYER J, AIRNS B R. Chromatin remodelling:The industrial revolution of DNA around histones[J]. Nat Rev Mol Cell Biol, 2006, 7(6):437-447. doi:10.1038/nrm1945.
    [26] ZOFALL M, PERSINGER J, KASSABOV S R, et al. Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome[J]. Nat Struct Mol Biol, 2006, 13(4):339-346. doi:10. 1038/nsmb1071.
    [27] STROHNER R, WACHSMUTH M, DACHAUER K, et al. A ‘loop recapture’ mechanism for ACF-dependent nucleosome remodeling[J]. Nat Struct Mol Biol, 2005, 12(8):683-690. doi:10.1038/nsmb966.
    [28] ZHANG Y L, SMITH C L, SAHA A, et al. DNA translocation and loop formation mechanism of chromatin remodeling by SWI/SNF and RSC[J]. Mol Cell, 2006, 24(4):559-568. doi:10.1016/j.molcel.2006.10.025.
    [29] CLAPIER C R, LÄNGST G, CORONA D F V, et al. Critical role for the histone H4 N terminus in nucleosome remodeling by ISWI[J]. Mol Cell Biol, 2001, 21(3):875-883. doi:10.1128/mcb.21.3.875-883.2001.
    [30] SHIBA T, KAKUDA S, OKA S, et al. Molecular mechanisms in acceptor substrate recognition of a human glucuronyltransferase, GlcAT-P, an enzyme critical in the biosynthesis of the carbohydrate epitope HNK-1[J]. Seikagaku, 2005, 77(2):153-158.
    [31] FERREIRA H, FLAUS A, OWEN-HUGHES T. Histone modifications influence the action of Snf2 family remodelling enzymes by different mechanisms[J]. J Mol Biol, 2007, 374(3):563-579. doi:10.1016/j. jmb.2007.09.059.
    [32] KNIZEWSKI L, GINALSKI K, JERZMANOWSKI A. Snf2 proteins in plants:Gene silencing and beyond[J]. Trends Plant Sci, 2008, 13(10):557-565. doi:10.1016/j.tplants.2008.08.004.
    [33] JERZMANOWSKI A. SWI/SNF chromatin remodeling and linker histones in plants[J]. BBA Gene Struct Expr, 2007, 1769(5/6):330-345. doi:10.1016/j.bbaexp.2006.12.003.
    [34] FARRONA S, HURTADO L, BOWMAN J L, et al. The Arabidopsis thaliana SNF2 homolog AtBRM controls shoot development and flowering[J]. Development, 2004, 131(20):4965-4975. doi:10.1242/dev.01363.
    [35] HURTADO L, FARRONA S, REYES J C. The putative SWI/SNF complex subunit BRAHMA activates flower homeotic genes in Arabidopsis thaliana[J]. Plant Mol Biol, 2006, 62(1/2):291-304. doi:10.1007/s11103-006-9021-2.
    [36] ZHAO M L, YANG S G, CHEN C Y, et al. Arabidopsis BREVI-PEDICELLUS interacts with the SWI2/SNF2 chromatin remodeling ATPase BRAHMA to regulate KNAT2 and KNAT6 expression in control of inflorescence architecture[J]. PLoS Genet, 2015, 11(3):e1005125. doi:10.1371/journal.pgen.1005125.
    [37] WU M F, SANG Y, BEZHANI S, et al. SWI2/SNF2 chromatin remodeling ATPases overcome polycomb repression and control floral organ identity with the LEAFY and SEPALLATA3 transcription factors[J]. Proc Natl Acad Sci USA, 2012, 109(9):3576-3581. doi:10.1073/pnas.1113409109.
    [38] EFRONI I, HAN S K, KIM H J, et al. Regulation of leaf maturation by chromatin-mediated modulation of cytokinin responses[J]. Dev Cell, 2013, 24(4):438-445. doi:10.1016/j.devcel.2013.01.019.
    [39] VERCRUYSSEN L, VERKEST A, GONZALEZ N, et al. ANGUSTI-FOLIA3 binds to swi/snf chromatin remodeling complexes to regulate transcription during Arabidopsis leaf development[J]. Plant Cell, 2014, 26(1):210-229. doi:10.1105/tpc.113.115907.
    [40] ZHANG D, LI Y H, ZHANG X Y, et al. The SWI2/SNF2 chromatin-remodeling ATPase BRAHMA regulates chlorophyll biosynthesis in Arabidopsis[J]. Mol Plant, 2017, 10(1):155-167. doi:10.1016/j.molp. 2016.11.003.
    [41] LI C L, GU L F, GAO L, et al. Concerted genomic targeting of H3K27 demethylase REF6 and chromatin-remodeling ATPase BRM in Arabi-dopsis[J]. Nat Genet, 2016, 48(6):687-693. doi:10.1038/ng.3555.
    [42] BRZEZINKA K, ALTMANN S, CZESNICK H, et al. Arabidopsis FORGETTER1 mediates stress-induced chromatin memory through nucleosome remodeling[J]. Elife, 2016, 5:e17061. doi:10.7554/elife. 17061.
    [43] YANG S G, Li C L, ZHAO L M, et al. The Arabidopsis SWI2/SNF2 chromatin remodeling ATPase BRAHMA targets directly to PINs and is required for root stem cell niche maintenance[J]. Plant Cell, 2015, 27(6):1670-1680. doi:10.1105/tpc.15.00091.
    [44] ZHANG J J, LAI J B, WANG F G, et al. A SUMO ligase AtMMS21 regulates the stability of the chromatin remodeler BRAHMA in root development[J]. Plant Physiol, 2017, 173(3):1574-1582. doi:10. 1104/pp.17.00014.
    [45] HAN S K, SANG Y, RODRIGUES A, et al. The SWI2/SNF2 chromatin remodeling ATPase BRAHMA represses abscisic acid responses in the absence of the stress stimulus in Arabidopsis[J]. Plant Cell, 2012, 24(12):4892-4906. doi:10.1105/tpc.112.105114.
    [46] PEIRATS-LLOBET M, HAN S K, GONZALEZ-GUZMAN M, et al. A direct link between abscisic acid sensing and the chromatin-remodeling ATPase BRAHMA via core ABA signaling pathway components[J]. Mol Plant, 2016, 9(1):136-147. doi:10.1016/j.molp.2015.10.003.
    [47] WANG Z Y, MA Z Y, CASTILLO-GONZÁLEZ C, et al. SWI2/SNF2 ATPase CHR2 remodels pri-miRNAs via serrate to impede miRNA production[J]. Nature, 2018, 557(7706):516-521. doi:10.1038/s41586-018-0135-x.
    [48] HAN P, LI Q, ZHU Y X. Mutation of Arabidopsis BARD1 causes meristem defects by failing to confine WUSCHEL expression to the organizing center[J]. Plant Cell, 2008, 20(6):1482-1493. doi:10. 1105/tpc.108.058867.
    [49] KWON C S, CHEN C B, WAGNER D. WUSCHEL is a primary target for transcriptional regulation by SPLAYED in dynamic control of stem cell fate in Arabidopsis[J]. Genes Dev, 2005, 19(8):992-1003. doi:10. 1101/gad.1276305.
    [50] LEEGGANGERS H A C F, FOLTA A, MURAS A, et al. Reduced seed germination in Arabidopsis over-expressing SWI/SNF2 ATPase genes[J]. Physiol Plant, 2015, 153(2):318-326. doi:10.1111/ppl.12231.
    [51] FOLTA A, SEVERING E I, KRAUSKOPF J, et al. Over-expression of Arabidopsis AtCHR23 chromatin remodeling ATPase results in increased variability of growth and gene expression[J]. BMC Plant Biol, 2014, 14:76. doi:10.1186/1471-2229-14-76.
    [52] MLYNÁROVÁ L, NAP J P, BISSELING T. The SWI/SNF chromatin-remodeling gene AtCHR12 mediates temporary growth arrest in Arabidopsis thaliana upon perceiving environmental stress[J]. Plant J, 2007, 51(5):874-885. doi:10.1111/j.1365-313x.2007.03185.x.
    [53] SARNOWSKI T J, RIOS G, JASIK J, et al. SWI3 subunits of putative SWI/SNF chromatin-remodeling complexes play distinct roles during Arabidopsis development[J]. Plant Cell, 2005, 17(9):2454-2472. doi:10.1105/tpc.105.031203.
    [54] BEZHANI S, WINTER C, HERSHMAN S, et al. Unique, shared, and redundant roles for the Arabidopsis SWI/SNF chromatin remodeling ATPases BRAHMA and SPLAYED[J]. Plant Cell, 2007, 19(2):403-416. doi:10.1105/tpc.106.048272.
    [55] SAEZ A, RODRIGUES A, SANTIAGO J, et al. HAB1-SWI3B interaction reveals a link between abscisic acid signaling and putative SWI/SNF chromatin-remodeling complexes in Arabidopsis[J]. Plant Cell, 2008, 20(11):2972-2988. doi:10.1105/tpc.107.056705.
    [56] ZHU Y Y, ROWLEY M J, BÖHMDORFER G, et al. A SWI/SNF chromatin-remodeling complex acts in noncoding RNA-mediated transcriptional silencing[J]. Mol Cell, 2013, 49(2):298-309. doi:10. 1016/j.molcel.2012.11.011.
    [57] LIU Z W, ZHOU J X, HUANG H W, et al. Two components of the RNA-directed DNA methylation pathway associate with MORC6 and silence loci targeted by MORC6 in Arabidopsis[J]. PLoS Genet, 2016, 12(5):e1006026. doi:10.1371/journal.pgen.1006026.
    [58] HAN W X, HAN D L, HE Z P, et al. The SWI/SNF subunit SWI3B regulates IAMT1 expression via chromatin remodeling in Arabidopsis leaf development[J]. Plant Sci, 2018, 271:127-132. doi:10.1016/j. plantsci.2018.03.021.
    [59] SARNOWSKA E A, ROLICKA A T, BUCIOR E, et al. DELLA-inter-acting SWI3C core subunit of switch/sucrose nonfermenting chromatin remodeling complex modulates gibberellin responses and hormonal cross talk in Arabidopsis[J]. Plant Physiol, 2013, 163(1):305-317. doi:10.1104/pp.113.223933
    [60] TANG X R, HOU A F, BABU M, et al. The Arabidopsis BRAHMA chromatin-remodeling ATPase is involved in repression of seed maturation genes in leaves[J]. Plant Physiol, 2008, 147(3):1143-1157. doi:10.1104/pp.108.121996.
    [61] BRZESKI J, PODSTOLSKI W, OLCZAK K, et al. Identification and analysis of the Arabidopsis thaliana BSH gene, a member of the SNF5 gene family[J]. Nucl Acids Res, 1999, 27(11):2393-2399. doi:10. 1093/nar/27.11.2393.
    [62] SACHAROWSKI S P, GRATKOWSKA D M, SARNOWSKA E A, et al. SWP73 subunits of Arabidopsis SWI/SNF chromatin remodeling complexes play distinct roles in leaf and flower development[J]. Plant Cell, 2015, 27(7):1889-1906. doi:10.1105/tpc.15.00233.
    [63] JÉGU T, DOMENICHINI S, BLEIN T, et al. A swi/snf chromatin remodelling protein controls cytokinin production through the regu-lation of chromatin architecture[J]. PLoS One, 2015, 10(10):e0138276. doi:10.1371/journal.pone.0138276.
    [64] JÉGU T, LATRASSE D, DELARUE M, et al. The BAF60 subunit of the swi/snf chromatin-remodeling complex directly controls the formation of a gene loop at flowering locus C in Arabidopsis[J]. Plant Cell, 2014, 26(2):538-551. doi:10.1105/tpc.113.114454.
    [65] JÉGU T, VELUCHAMY A, RAMIREZ-PRADO J S, et al. The Arabidopsis SWI/SNF protein BAF60 mediates seedling growth control by modulating DNA accessibility[J]. Genome Biol, 2017, 18:114. doi:10.1186/s13059-017-1246-7.
    [66] CAMPI M, D'ANDREA L, EMILIANI J, et al. Participation of chromatin-remodeling proteins in the repair of ultraviolet-b-damaged DNA[J]. Plant Physiol, 2012, 158(2):981-995. doi:10.1104/pp.111.191452.
    [67] KANDASAMY M K, DEAL R B, MCKINNEY E C, et al. Silencing the nuclear actin-related protein AtARP4 in Arabidopsis has multiple effects on plant development, including early flowering and delayed floral senescence[J]. Plant J, 2005, 41(6):845-858. doi:10.1111/j. 1365-313x.2005.02345.x.
    [68] KANDASAMY M K, MCKINNEY E C, DEAL R B, et al. Arabidopsis ARP7 is an essential actin-related protein required for normal embryo-genesis, plant architecture, and floral organ abscission[J]. Plant Physiol, 2005, 138(4):2019-2032. doi:10.1104/pp.105.065326.
    [69] FRITSCH O, BENVENUTO G, BOWLER C, et al. The INO80 protein controls homologous recombination in Arabidopsis thaliana[J]. Mol Cell, 2004, 16(3):479-485. doi:10.1016/j.molcel.2004.09.034.
    [70] ZHANG C, CAO L, RONG L, et al. The chromatin-remodeling factor AtINO80 plays crucial roles in genome stability maintenance and in plant development[J]. Plant J, 2015, 82(4):655-668. doi:10.1111/tpj.12840.
    [71] HAN Y F, DOU K, MA Z Y, et al. SUVR2 is involved in trans-criptional gene silencing by associating with SNF2-related chromatin-remodeling proteins in Arabidopsis[J]. Cell Res, 2014, 24(12):1445-1465. doi:10.1038/cr.2014.156.
    [72] DOKLÁDAL L, BENKOVÁ E, HONYS D, et al. An armadillo-domain protein participates in a telomerase interaction network[J]. Plant Mol Biol, 2018, 97(4/5):407-420. doi:10.1007/s11103-018-0747-4.
    [73] CHOI K, PARK C, LEE J, et al. Arabidopsis homologs of components of the SWR1 complex regulate flowering and plant development[J]. Development, 2007, 134(10):1931-1941. doi:10.1242/dev.001891.
    [74] MARCH-DÍAZ R, GARCIA-DOMÍNGUEZ M, FLORENCIO F J, et al. SEF, a new protein required for flowering repression in Arabidopsis, interacts with PIE1 and ARP6[J]. Plant Physiol, 2007, 143(2):893-901. doi:10.1104/pp.106.092270.
    [75] GÓMEZ-ZAMBRANO Á, CREVILLÉN P, FRANCO-ZORRILLA J M, et al. Arabidopsis SWC4 binds DNA and recruits the SWR1 complex to modulate histone H2A.Z deposition at key regulatory genes[J]. Mol Plant, 2018, 11(6):815-832. doi:10.1016/j.molp.2018.03.014.
    [76] BERRIRI S, GANGAPPA S N, KUMAR S V. SWR1 chromatin-remodeling complex subunits and H2A.Z have non-overlapping functions in immunity and gene regulation in Arabidopsis[J]. Mol Plant, 2016, 9(7):1051-1065. doi:10.1016/j.molp.2016.04.003.
    [77] CHOI K, KIM J, MULLER S Y, et al. Regulation of microRNA-mediated developmental changes by the SWR1 chromatin remodeling complex[J]. Plant Physiol, 2016, 171(2):1128-1143. doi:10.1104/pp. 16.00332.
    [78] CUI Z B, TONG A Z, HUO Y Q, et al. SKIP controls flowering time via the alternative splicing of SEF pre-mRNA in Arabidopsis[J]. BMC Biol, 2017, 15:80. doi:10.1186/s12915-017-0422-2.
    [79] QIN Y, ZHAO L H, SKAGGS M I, et al. Actin-related protein6 regulates female meiosis by modulating meiotic gene expression in Arabidopsis[J]. Plant Cell, 2014, 26(4):1612-1628. doi:10.1105/tpc. 113.120576.
    [80] ZHAO L H, CAI H Y, SU Z X, et al. KLU suppresses megasporocyte cell fate through SWR1-mediated activation of WRKY28 expression in Arabidopsis[J]. Proc Natl Acad Sci USA, 2018, 115(3):E526-E535. doi:10.1073/pnas.1716054115..
    [81] ZACHARAKI V, BENHAMED M, POULIOS S, et al. The Arabi-dopsis ortholog of the YEATS domain containing protein YAF9a regu-lates flowering by controlling H4 acetylation levels at the FLC locus[J]. Plant Sci, 2012, 196:44-52. doi:10.1016/j.plantsci.2012.07.010.
    [82] CREVILLÉN P, GÓMEZ-ZAMBRANO Á, LÓPEZ J A, et al. Arabi-dopsis YAF9 histone readers modulate flowering time through nuA4-complex-dependent H4 and H2A.Z histone acetylation at FLC chromatin[J]. New Phytol, 2019, 222(4):1893-1908. doi:10.1111/nph.15737.
    [83] SHEN Y, DEVIC M, LEPINIEC L, et al. Chromodomain, helicase and DNA-binding CHD1 protein, CHR5, are involved in establishing active chromatin state of seed maturation genes[J]. Plant Biotechnol J, 2015, 13(6):811-820. doi:10.1111/pbi.12315.
    [84] ZOU B H, SUN Q, ZHANG W L, et al. The Arabidopsis chromatin-remodeling factor CHR5 regulates plant immune responses and nucleosome occupancy[J]. Plant Cell Physiol, 2017, 58(12):2202-2216. doi:10.1093/pcp/pcx155.
    [85] AICHINGER E, VILLAR C B R, DI MAMBRO R, et al. The CHD3 chromatin remodeler PICKLE and polycomb group proteins antago-nistically regulate meristem activity in the Arabidopsis root[J]. Plant Cell, 2011, 23(3):1047-1060. doi:10.1105/tpc.111.083352.
    [86] FUKAKI H, TANIGUCHI N, TASAKA M. PICKLE is required for SOLITARY-ROOT/IAA14-mediated repression of ARF7 and ARF19 activity during Arabidopsis lateral root initiation[J]. Plant J, 2006, 48(3):380-389. doi:10.1111/j.1365-313x.2006.02882.x.
    [87] ZHANG H, BISHOP B, RINGENBERG W, et al. The CHD3 remodeler PICKLE associates with genes enriched for trimethylation of histone H3 lysine 27[J]. Plant Physiol, 2012, 159(1):418-432. doi:10.1104/pp.112.194878.
    [88] YANG R, ZHENG Z M, CHEN Q, et al. The developmental regulator PKL is required to maintain correct DNA methylation patterns at RNA-directed DNA methylation loci[J]. Genome Biol, 2017, 18(1):103. doi:10.1186/s13059-017-1226-y.
    [89] PARK J, OH D H, DASSANAYAKE M, et al. Gibberellin signaling requires chromatin remodeler PICKLE to promote vegetative growth and phase transitions[J]. Plant Physiol, 2017, 173(2):1463-1474. doi:10.1104/pp.16.01471.
    [90] XU M L, HU T Q, SMITH M R, et al. Epigenetic regulation of vegetative phase change in Arabidopsis[J]. Plant Cell, 2016, 28(1):28-41. doi:10.1105/tpc.15.00854.
    [91] JING Y J, ZHANG D, WANG X, et al. Arabidopsis chromatin remodeling factor PICKLE interacts with transcription factor HY5 to regulate hypocotyl cell elongation[J]. Plant Cell, 2013, 25(1):242-256. doi:10.1105/tpc.112.105742.
    [92] SMACZNIAK C, IMMINK R G H, MUIÑO J M, et al. Charac-terization of MADS-domain transcription factor complexes in Arabi-dopsis flower development[J]. Proc Natl Acad Sci USA, 2012, 109(5):1560-1565. doi:10.1073/pnas.1112871109.
    [93] ZHANG D, JING Y J, JIANG Z M, et al. The chromatin-remodeling factor PICKLE integrates brassinosteroid and gibberellin signaling during skotomorphogenic growth in Arabidopsis[J]. Plant Cell, 2014, 26(6):2472-2485. doi:10.1105/tpc.113.121848.
    [94] ZEMACH A, LI Y, WAYBURN B, et al. DDM1 binds Arabidopsis methyl-CpG binding domain proteins and affects their subnuclear localization[J]. Plant Cell, 2005, 17(5):1549-1558. doi:10.1105/tpc. 105.031567
    [95] ZEMACH A, KIM M Y, HSIEH P H, et al. The Arabidopsis nucleo-some remodeler DDM1 allows DNA methyltransferases to access h1-containing heterochromatin[J]. Cell, 2013, 153(1):193-205. doi:10. 1016/j.cell.2013.02.033.
    [96] LYONS D B, ZILBERMAN D. DDM1 and lsh remodelers allow methylation of DNA wrapped in nucleosomes[J]. Elife, 2017, 6:e30674. doi:10.7554/eLife.30674.
    [97] XIE X Y, SHIPPEN D E. DDM1 guards against telomere truncation in Arabidopsis[J]. Plant Cell Rep, 2018, 37(3):501-513. doi:10.1007/s00299-017-2245-6.
    [98] CHO E J, CHOI S H, KIM J H, et al. A mutation in plant-specific swi2/snf2-like chromatin-remodeling proteins, DRD1 and DDM1, delays leaf senescence in Arabidopsis thaliana[J]. PLoS One, 2016, 11(1):e0146826. doi:10.1371/journal.pone.0146826.
    [99] LI G, LIU S J, WANG J W, et al. ISWI proteins participate in the genome-wide nucleosome distribution in Arabidopsis[J]. Plant J, 2014, 78(4):706-714. doi:10.1111/tpj.12499.
    [100] LI G, ZHANG J W, LI J Q, et al. Imitation switch chromatin remo-deling factors and their interacting RINGLET proteins act together in controlling the plant vegetative phase in Arabidopsis[J]. Plant J, 2012, 72(2):261-270. doi:10.1111/j.1365-313X.2012.05074.x.
    [101] LAW J A, AUSIN I, JOHNSON L M, et al. A protein complex required for polymerase V transcripts and RNA-directed DNA methy-lation in Arabidopsis[J]. Curr Biol, 2010, 20(10):951-956. doi:10. 1016/j.cub.2010.03.062.
    [102] HIRAKAWA T, HASEGAWA J, WHITE C I, et al. RAD54 forms DNA repair foci in response to DNA damage in living plant cells[J]. Plant J, 2017, 90(2):372-382. doi:10.1111/tpj.13499.
    [103] ARCHACKI R, BUSZEWICZ D, SARNOWSKI T J, et al. BRAHMA ATPase of the SWI/SNF chromatin remodeling complex acts as a positive regulator of gibberellin-mediated responses in Arabidopsis[J]. PLoS One, 2013, 8(3):e58588. doi:10.1371/journal.pone.0058588.
    [104] FARRONA S, HURTADO L, MARCH-DÍAZ R, et al. Brahma is required for proper expression of the floral repressor FLC in Arabi-dopsis[J]. PLoS One, 2011, 6(3):e17997. doi:10.1371/journal.pone. 0017997.
    [105] LI C L, CHEN C, GAO L, et al. The Arabidopsis swi2/snf2 chromatin remodeler BRAHMA regulates polycomb function during vegetative development and directly activates the flowering repressor gene svp[J]. PLoS Genet, 2015, 11(1):e1004944. doi:10.1371/journal.pgen. 1004944.
    [106] WALLEY J W, ROWE H C, XIAO Y M, et al. The chromatin remo-deler SPLAYED regulates specific stress signaling pathways[J]. PLoS Pathog, 2008, 4(12):e1000237. doi:10.1371/journal.ppat.1000237.
    [107] JOHNSON K C M, XIA S T, FENG X Q, et al. The chromatin remo-deler SPLAYED negatively regulates SNC1-mediated immunity[J]. Plant Cell Physiol, 2015, 56(8):1616-1623. doi:10.1093/pcp/pcv087.
    [108] GENG F, CAO Y, LAURENT B C. Essential roles of snf5p in snf-swi chromatin remodeling in vivo[J]. Mol Cell Biol, 2001, 21(13):4311-4320. doi:10.1128/MCB.21.13.4311-4320.2001.
    [109] MULLER J, OMA Y, VALLAR L, et al. Sequence and comparative genomic analysis of actin-related proteins[J]. Mol Biol Cell, 2005, 16(12):5736-5748. doi:10.1091/mbc.e05-06-0508.
    [110] KANDASAMY M K, DEAL R B, MCKINNEY E C, et al. Plant actin-related proteins[J]. Trends Plant Sci, 2004, 9(4):196-202. doi:10.1016/j.tplants.2004.02.004.
    [111] KANDASAMY M K, MCKINNEY E C, MEAGHER R B. Cell cycle-dependent association of Arabidopsis actin-related proteins AtARP4 and AtARP7 with the nucleus[J]. Plant J, 2003, 33(5):939-948. doi:10.1046/j.1365-313x.2003.01691.x.
    [112] LI H C, CHUANG K, HENDERSON J T, et al. PICKLE acts during germination to repress expression of embryonic traits[J]. Plant J, 2005, 44(6):1010-1022. doi:10.1111/j.1365-313x.2005.02602.x.
    [113] AICHINGER E, VILLAR C B R, FARRONR S, et al. CHD3 proteins and polycomb group proteins antagonistically determine cell identity in Arabidopsis[J]. PLoS Genet, 2009, 5(8):e1000605. doi:10.1371/journal.pgen.1000605.
    [114] CARTER B, HENDERSON J T, SVEDIN E, et al. Cross-Talk between sporophyte and gametophyte generations is promoted by CHD3 chromatin remodelers in Arabidopsis thaliana[J]. Genetics, 2016, 203(2):817-829. doi:10.1534/genetics.115.180141
    [115] HIGO H, TAHIR M, TAKASHIMA K, et al. DDM1(decrease in DNA methylation) genes in rice (Oryza sativa)[J]. Mol Genet Genom, 2012, 287(10):785-792. doi:10.1007/s00438-012-0717-5.
    [116] MA X D, MA J, ZHAI H H, et al. CHR729 is a CHD3 protein that controls seedling development in rice[J]. PLoS One, 2015, 10(9):e0138934. doi:10.1371/journal.pone.0138934.
    [117] FOLTA A, BARGSTEN J W, BISSELING T, et al. Compact tomato seedlings and plants upon overexpression of a tomato chromatin remodelling ATPase gene[J]. Plant Biotechnol J, 2016, 14(2):581-591. doi:10.1111/pbi.12400.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

彭锈玲,王剑豪,杨松光.染色质重塑因子在植物发育过程的功能[J].热带亚热带植物学报,2019,27(5):565~579

复制
分享
文章指标
  • 点击次数:666
  • 下载次数: 553
  • HTML阅读次数: 506
  • 引用次数: 0
历史
  • 收稿日期:2019-03-25
  • 最后修改日期:2019-05-17
  • 在线发布日期: 2019-09-30
文章二维码