氮沉降对土壤线虫群落影响的研究进展
作者:
基金项目:

国家自然科学基金项目(41731176,31700422);中国青年创新促进会项目(2015287)资助


Advances in Effect of Nitrogen Deposition on Soil Nematode Communities
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [85]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    综述了主要陆地生态系统(草原、农田和森林)土壤线虫群落对氮沉降增加的响应格局和机制。总体上,氮沉降增加对线虫数量一般无显著影响,但增加了土壤中富集机会主义者(即低营养级的r-策略者)数量,降低了线虫群落成熟度指数(MI),表明氮沉降增加可能会使土壤食物网简化。氮沉降增加主要通过改变土壤微环境(如增加含氮离子浓度、降低土壤pH)直接影响土壤线虫群落,或者改变植物地上地下资源的输入和线虫与其他土壤动物的关系,间接影响线虫群落。最后,根据目前研究现状,指出了当前研究存在的局限性,包括研究时间和空间尺度上以及研究技术手段上的局限。建议综合多个全球环境变化因子,并结合室内试验及分子手段的方法对土壤线虫群落进行研究。

    Abstract:

    The increase of nitrogen deposition has altered ecosystem structure and function. As key bioindicators of soil ecosystems, soil nematodes have important ecological implications. With the globalization of nitrogen deposition, it has attracted widespread attention on how elevated nitrogen inputs affect soil nematode. The response pattern and mechanism of soil nematodes to elevated nitrogen deposition in terrestrial ecosystems (grassland, farmland and forests) were reviewed. In general, elevated nitrogen deposition had no significant effects on the number of soil nematodes, but increased the number of enrichment opportunist (i.e. r-strategy nematodes with low trophic levels) and decreased soil nematode maturity index (MI), indicating that the increase of nitrogen inputs might simplify soil food webs. Moreover, elevated nitrogen deposition could affect the soil nematode community directly by changing soil microenvironment, such as increased NH4+ and NO3- concentration and decreased soil pH, or indirectly by changing plant resource inputs and the relationships between the nematodes and other soil biota. In the end, some limitations of previous studies were pointed out, including temporal and special scales, and measurement techniques. To better understand the effects of global environmental changes, it is urgent to explore how multiple global change factors affect soil nematode communities across different terrestrial ecosystems. It was suggested to combine both molecular biology techniques and laboratory incubation methods in the future.

    参考文献
    [1] GALLOWAY J N, TOWNSEND A R, ERISMAN J W, et al. Trans-formation of the nitrogen cycle:Recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878):889-892. doi:10.1126/science. 1136674.
    [2] GALLOWAY J N, DENTENER F J, CAPONE D G, et al. Nitrogen cycles:Past, present, and future[J]. Biogeochemistry, 2004, 70(2):153-226. doi:10.1007/s10533-004-0370-0.
    [3] JIA Y L, YU G R, HE N P, et al. Spatial and decadal variations in inorganic nitrogen wet deposition in China induced by human activity[J]. Sci Rep, 2014, 4:3763. doi:10.1038/srep03763.
    [4] VITOUSEK P M, HOWARTH R W. Nitrogen limitation on land and in the sea:How can it occur[J]. Biogeochemistry, 1991, 13(2):87-115. doi:10.1007/BF00002772.
    [5] NEFF J C, TOWNSEND A R, GLEIXNER G, et al. Variable effects of nitrogen additions on the stability and turnover of soil carbon[J]. Nature, 2002, 419(6910):915-917. doi:10.1038/nature01136.
    [6] XIE Y X, ZHANG S L, FENG W, et al. Review of atmospheric nitrogen deposition research[J]. Chin J Eco-Agric, 2010, 18(4):897-904. doi:10.3724/SP.J.1011.2010.00897. 谢迎新, 张淑利, 冯伟, 等. 大气氮素沉降研究进展[J]. 中国生态农业学报, 2010, 18(4):897-904. doi:10.3724/SP.J.1011.2010.00897.
    [7] FANG Y T, YOH M, KOBA K, et al. Nitrogen deposition and forest nitrogen cycling along an urban-rural transect in southern China[J]. Glob Change Biol, 2011, 17(2):872-885. doi:10.1111/j.1365-2486.2010.02283.x.
    [8] MATSON P A, MCDOWELL W H, TOWNSEND A R, et al. The globalization of N deposition:ecosystem consequences in tropical environments[J]. Biogeochemistry, 1999, 46(1/2/3):67-83. doi:10.1023/A:1006152112852.
    [9] LU X K, MO J M, GILLIAM F S, et al. Effects of experimental nitrogen additions on plant diversity in an old-growth tropical forest[J]. Glob Change Biol, 2010, 16(10):2688-2700. doi:10.1111/j.1365-2486.2010.02174.x.
    [10] REICH P B, KNOPS J, TILMAN D, et al. Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition[J]. Nature, 2001, 410(6830):809-810. doi:10.1038/35071062.
    [11] REICH P B, HOBBIE S E, LEE T, et al. Nitrogen limitation constrains sustainability of ecosystem response to CO2[J]. Nature, 2006, 440(7086):922-925. doi:10.1038/nature04486.
    [12] DIJKSTRA F A, HOBBIE S E, REICH P B, et al. Divergent effects of elevated CO2, N fertilization, and plant diversity on soil C and N dynamics in a grassland field experiment[J]. Plant Soil, 2005, 272(1/2):41-52. doi:10.1007/s11104-004-3848-6.
    [13] XIE H. Taxonomy of Plant Nematodes[M]. 2nd ed. Beijing:Higher Education Press, 2005:1-2谢辉. 植物线虫分类学[M]. 第2版. 北京:高等教育出版社, 2005:1-2
    [14] COLEMAN D C, COLE C V, ELLIOTT E T. Decomposition, organic matter turnover and nutrient dynamics in agroecosystems[M]//LOW-RANCE R, STINNER B R, HOUSE G J. Agricultural Ecosystems:Unifying Concepts. New York:Wiley-Interscience, 1984:83-104.
    [15] MOORE J C, de RUITER P C. Temporal and spatial heterogeneity of trophic interactions within below-ground food webs[J]. Agric Ecosyst Environ, 1991, 34(1/2/3/4):371-397. doi:10.1016/0167-8809(91)90122-E.
    [16] ANDERSON R V, COLEMAN D C, COLE C V. Effects of saprotrophic grazing on net mineralization[M]//CLARK F E, ROSSWALL T. Terrestrial Nitrogen Cycles Ecological Bulletin. Stockholm:Swedish Natural Science Research Council, 1981:201-216.
    [17] BONGERS T, FERRIS H. Nematode community structure as a bioin-dicator in environmental monitoring[J]. Trends Ecol Evol, 1999, 14(6):224-228. doi:10.1016/S0169-5347(98)01583-3.
    [18] NEHER D A. Role of nematodes in soil health and their use as indi-cators[J]. J Nematol, 2001, 33(4):161-168.
    [19] FRECKMAN D W. Bacterivorous nematodes and organic-matter decomposition[J]. Agric Ecosyst Environ, 1988, 24(1/2/3):195-217. doi:10.1016/0167-8809(88)90066-7.
    [20] WASILEWSKA L. Impact of human activities on nematode commu-nities in terrestrial ecosystems[M]//CLARHOLM M, BERGSTRÖM L. Ecology of Arable Land:Perspectives and Challenges. Dordrecht:Springer, 1989:123-132. doi:10.1007/978-94-009-1021-8_12.
    [21] SHAO Y H, FU S L. The diversity and functions of soil nematodes[J]. Biodiv Sci, 2007, 15(2):116-123. doi:10.3321/j.issn:1005-0094.2007.02.002. 邵元虎, 傅声雷. 试论土壤线虫多样性在生态系统中的作用[J]. 生物多样性, 2007, 15(2):116-123. doi:10.3321/j.issn:1005-0094.2007.02.002.
    [22] HUGOT J P, BAUJARD P, MORAND S. Biodiversity in helminths and nematodes as a field of study:An overview[J]. Nematology, 2001, 3(3):199-208. doi:10.1163/156854101750413270.
    [23] YEATES G W, BONGERS T, de GOEDE R G M, et al. Feeding habits in soil nematode families and genera:An outline for soil ecologists[J]. J Nematol, 1993, 25(3):315-331.
    [24] BONGERS T. The maturity index:An ecological measure of environ-mental disturbance based on nematode species composition[J]. Oecologia, 1990, 83(1):14-19. doi:10.1007/BF00324627.
    [25] BONGERS T, BONGERS M. Functional diversity of nematodes[J]. Appl Soil Ecol, 1998, 10(3):239-251. doi:10.1016/S0929-1393(98) 00123-1.
    [26] CHEN Y F, HAN X M, LI Y F, et al. Approach of nematode fauna analysis indicate the structure and function of soil food web[J]. Acta Ecol Sin, 2014, 28(5):1072-1084. doi:10.5846/stxb201307021821. 陈云峰, 韩雪梅, 李钰飞, 等. 线虫区系分析指示土壤食物网结构和功能研究进展[J]. 生态学报, 2014, 28(5):1072-1084. doi:10.5846/stxb201307021821.
    [27] FERRIS H, BONGERS T, de GOEDE R G M. A framework for soil food web diagnostics:Extension of the nematode faunal analysis concept[J]. Appl Soil Ecol, 2001, 18(1):13-29. doi:10.1016/S0929-1393(01)00152-4.
    [28] ZHANG X K, LIANG W J, LI Q. Forest Soil Nematodes in Changbai Mountain:Morphology and Distribution[M]. Beijing:China Agriculture Press, 2013:16-27. 张晓珂, 梁文举, 李琪. 长白山森林土壤线虫——形态分类与分布格局[M]. 北京:中国农业出版社, 2013:16-27.
    [29] YEATES G W. Nematodes as soil indicators:Functional and biodi-versity aspects[J]. Biol Fert Soils, 2003, 37(4):199-210. doi:10.1007/s00374-003-0586-5.
    [30] KORTHALS G W, de GOEDE R G M, KAMMENGA J E, et al. The maturity index as an instrument for risk assessment of soil pollution[M]//van STRAALEN N M, KRIVOLUTSKY D A. Bioindicator Systems for Soil Pollution. Dordrecht:Kluwer Academic Publishers, 1996.
    [31] FERRIS H, GRIFFITHS B S, PORAZINSKA D L, et al. Reflections on plant and soil nematode ecology:Past, present and future[J]. J Nematol, 2012, 44(2):115-126.
    [32] WU J H, FU C Z, CHEN S S, et al. Soil faunal response to land use:effect of estuarine tideland reclamation on nematode communities[J]. Appl Soil Ecol, 2002, 21(2):131-147. doi:10.1016/S0929-1393(02) 00065-3.
    [33] FERRIS H, MATUTE M M. Structural and functional succession in the nematode fauna of a soil food web[J]. Appl Soil Ecol, 2003, 23(2):93-110. doi:10.1016/S0929-1393(03)00044-1.
    [34] LIANG W J, LI Q, JIANG Y, et al. Nematode faunal analysis in an aquic brown soil fertilized with slow-release urea, northeast China[J]. Appl Soil Ecol, 2005, 29(2):185-192. doi:10.1016/j.apsoil.2004.10.004.
    [35] LIU T, CHEN X Y, HU F, et al. Carbon-rich organic fertilizers to increase soil biodiversity:Evidence from a meta-analysis of nematode communities[J]. Agric Ecosyst Environ, 2016, 232:199-207. doi:10.1016/j.agee.2016.07.015.
    [36] VILLENAVE U, BONGERS T, EKSCHMITT K, et al. Changes in nematode communities after manuring in millet fields in Senegal[J]. Nematology, 2003, 5(3):351-358. doi:10.1016/j.snb.2004.05.018.
    [37] ZHAO J, NEHER D A. Soil nematode genera that predict specific types of disturbance[J]. Appl Soil Ecol, 2013, 64(4):135-141. doi:10.1016/j.apsoil.2012.11.008.
    [38] NEHER D A. Nematode communities in organically and conventionally managed agricultural soils[J]. J Nematol, 1999, 31(2):142-154.
    [39] PORAZINSKA D L, DUNCAN L W, MCSORLEY R, et al. Nematode communities as indicators of status and processes of a soil ecosystem influenced by agricultural management practices[J]. Appl Soil Ecol, 1999, 13(1):69-86. doi:10.1016/S0929-1393(99)00018-9.
    [40] BULLUCK III L R, BARKER K R, RISTAINO J B. Influences of organic and synthetic soil fertility amendments on nematode trophic groups and community dynamics under tomatoes[J]. Appl Soil Ecol, 2002, 21(3):233-250. doi:10.1016/S0929-1393(02)00089-6.
    [41] AZPILICUETA C V, ARUANI M C, CHAVES E, et al. Soil nematode responses to fertilization with ammonium nitrate after six years of unfertilized apple orchard[J]. Span J Agric Res, 2014, 12(2):353-363. doi:10.5424/sjar/2014122-4634.
    [42] ZHANG Z Y, ZHANG X K, XU M G, et al. Responses of soil micro-food web to long-term fertilization in a wheat-maize rotation system[J]. Appl Soil Ecol, 2016, 98:56-64. doi:10.1016/j.apsoil.2015.09.008.
    [43] PAN K W, GONG P M, WANG J C, et al. Applications of nitrate and ammonium fertilizers alter soil nematode food webs in a continuous cucumber cropping system in Southwestern Sichuan, China[J]. Eur J Soil Sci, 2015, 4(4):287-300.
    [44] EISENHAUER N, CESARZ S, KOLLER R, et al. Global change belowground:impacts of elevated CO2, nitrogen, and summer drought on soil food webs and biodiversity[J]. Glob Change Biol, 2012, 18(2):435-447. doi:10.1111/j.1365-2486.2011.02555.x.
    [45] LI Q, BAI H H, LIANG W J, et al. Nitrogen addition and warming independently influence the belowground micro-food web in a temperate steppe[J]. PLoS One, 2013, 8(3):e60441. doi:10.1371/journal.pone. 0060441.
    [46] CHEN D M, LAN Z C, HU S J, et al. Effects of nitrogen enrichment on belowground communities in grassland:Relative role of soil nitrogen availability vs. soil acidification[J]. Soil Biol Biochem, 2015, 89:99-108. doi:10.1016/j.soilbio.2015.06.028.
    [47] EISENHAUER N, DOBIES T, CESARZ S, et al. Plant diversity effects on soil food webs are stronger than those of elevated CO2 and N deposition in a long-term grassland experiment[J]. Proc Natl Acad Sci USA, 2013, 110(17):6889-6894. doi:10.1073/pnas.1217382110.
    [48] SARATHCHANDRA S U, GHANI A, YEATES G W, et al. Effect of nitrogen and phosphate fertilizers on microbial and nematode diversity in pasture soils[J]. Soil Biol Biochem, 2001, 33(7/8):953-964. doi:10.1016/S0038-0717(00)00245-5.
    [49] FORGE T A, BITTMAN S, KOWALENKO C G. Responses of grass-land soil nematodes and protozoa to multi-year and single-year appli-cations of dairy manure slurry and fertilizer[J]. Soil Biol Biochem, 2005, 37(10):1751-1762. doi:10.1016/j.soilbio.2004.11.013.
    [50] CUI S Y, LIANG S W, ZHANG X K, et al. Long-term fertilization management affects the C utilization from crop residues by the soil micro-food web[J]. Plant Soil, 2018, 429(1-2):335-348. doi:10.1007/s11104-018-3688-4.
    [51] SUN F, TARIQ A, CHEN H, et al. Effect of nitrogen and phosphorus application on agricultural soil food webs[J]. Arch Agron Soil Sci, 2017, 63(8):1176-1186. doi:10.1080/03650340.2016.1266483.
    [52] LI Q, JIANG Y, LIANG W J, et al. Long-term effect of fertility management on the soil nematode community in vegetable production under greenhouse conditions[J]. Appl Soil Ecol, 2010, 46(1):111-118. doi:10.1016/j.apsoil.2010.06.016.
    [53] VILLENAVE C, SAJ S, PABLO A L, et al. Influence of long-term organic and mineral fertilization on soil nematofauna when growing Sorghum bicolor in Burkina Faso[J]. Biol Fert Soils, 2010, 46(7):659-670. doi:10.1007/s00374-010-0471-y.
    [54] LIANG W J, LOU Y L, LI Q, et al. Nematode faunal response to long-term application of nitrogen fertilizer and organic manure in northeast China[J]. Soil Biol Biochem, 2009, 41(5):883-890. doi:10.1016/j. soilbio.2008.06.018.
    [55] WANG K H, McSORLEY R, MARSHALL A, et al. Influence of organic Crotalaria juncea hay and ammonium nitrate fertilizers on soil nematode communities[J]. Appl Soil Ecol, 2006, 31(3):186-198.
    [56] ZHANG A L, ZHAO J N, LIU H M, et al. Effects of nitrogen addition on soil nematode community characteristics in Stipa baicalensis steppe[J]. Acta Ecol Sin, 2018, 38(10):3616-3627. doi:10.5846/stxb201704170689. 张爱林, 赵建宁, 刘红梅, 等. 氮添加对贝加尔针茅草原土壤线虫群落特征的影响[J]. 生态学报, 2018, 38(10):3616-3627. doi:10.5846/stxb201704170689.
    [57] WANG J, HU J, DU G Z. Effects of nitrogen and phosphorus on the soil nematode community in Tibetan Plateau alpine meadows[J]. Acta Pratacult Sin, 2015, 24(12):20-28. doi:10.11686/cyxb2015035. 王静, 胡靖, 杜国祯. 施氮磷肥对青藏高原高寒草甸土壤线虫群落组成的影响[J]. 草业学报, 2015, 24(12):20-28. doi:10.11686/cyxb 2015035.
    [58] QI S, ZHAO X R, ZHENG H X, et al. Changes of soil biodiversity in Inner Mongolia steppe after 5 years of N and P fertilizer applications[J]. Acta Ecol Sin, 2010, 30(20):5518-5526. 齐莎, 赵小蓉, 郑海霞, 等. 内蒙古典型草原连续5年施用氮磷肥土壤生物多样性的变化[J]. 生态学报, 2010, 30(20):5518-5526.
    [59] van EEKEREN N, de BOER H, BLOEM J, et al. Soil biological quality of grassland fertilized with adjusted cattle manure slurries in comparison with organic and inorganic fertilizers[J]. Biol Fert Soils, 2009, 45(6):595-608. doi:10.1007/s00374-009-0370-2.
    [60] CHENG Z, GREWAL P S, STINNER B R, et al. Effects of long-term turfgrass management practices on soil nematode community and nutrient pools[J]. Appl Soil Ecol, 2008, 38(2):174-184. doi:10.1016/j.apsoil.2007.10.007.
    [61] SHAO Y H, LIU T, EISENHAUER N, et al. Plants mitigate detri-mental nitrogen deposition effects on soil biodiversity[J]. Soil Biol Biochem, 2018, 127:178-186. doi:10.1016/j.soilbio.2018.09.022.
    [62] CHENG Y Y, SUN T, WANG Q K, et al. Effects of simulated nitrogen deposition on temperate forest soil nematode communities and their metabolic footprints[J]. Acta Ecol Sin, 2018, 38(2):475-484. doi:10.5846/stxb201606231225. 程云云, 孙涛, 王清奎, 等. 模拟氮沉降对温带森林土壤线虫群落组成和代谢足迹的影响[J]. 生态学报, 2018, 38(2):475-484. doi:10.5846/stxb201606231225.
    [63] ASLAM T J, BENTON T G, NIELSEN U N, et al. Impacts of eucalypt plantation management on soil faunal communities and nutrient bioavailability:trading function for dependence?[J]. Biol Fert Soils, 2015, 51(5):637-644. doi:10.1007/s00374-015-1003-6.
    [64] ZHAO J, WANG X L, SHAO Y H, et al. Effects of vegetation removal on soil properties and decomposer organisms[J]. Soil Biol Biochem, 2011, 43(5):954-960. doi:10.1016/j.soilbio.2011.01.010.
    [65] SUN X M, ZHANG X K, ZHANG S X, et al. Soil nematode responses to increases in nitrogen deposition and precipitation in a temperate forest[J]. PLoS One, 2013, 8(12):e82468. doi:10.1371/journal.pone. 0082468.
    [66] FORGE T A, SIMARD S W. Structure of nematode communities in forest soils of southern British Columbia:Relationships to nitrogen mineralization and effects of clearcut harvesting and fertilization[J]. Biol Fert Soils, 2001, 34(3):170-178. doi:10.1007/s003740100390.
    [67] ETTEMA C H, LOWRANCE R, COLEMAN D C. Riparian soil response to surface nitrogen input:The indicator potential of free-living soil nematode populations[J]. Soil Biol Biochem, 1999, 31(12):1625-1638. doi:10.1016/S0038-0717(99)00072-3.
    [68] ZHAO J, WANG F M, LI J, et al. Effects of experimental nitrogen and/or phosphorus additions on soil nematode communities in a secon-dary tropical forest[J]. Soil Biol Biochem, 2014, 75:1-10. doi:10.1016/j.soilbio.2014.03.019.
    [69] SOHLENIUS B, WASILEWSKA L. Influence of irrigation and fertili-zation on the nematode community in a Swedish pine forest soil[J]. J Appl Ecol, 1984, 21(1):327-342. doi:10.2307/2403057.
    [70] RUAN W B, SANG Y, CHEN Q, et al. The response of soil nematode community to nitrogen, water, and grazing history in the Inner Mongo-lian Steppe, China[J]. Ecosystems, 2012, 15(7):1121-1133. doi:10.1007/s10021-012-9570-y.
    [71] WEI C Z, ZHENG H F, LI Q, et al. Nitrogen addition regulates soil nematode community composition through ammonium suppression[J]. PLoS One, 2012, 7(8):e43384. doi:10.1371/journal.pone.0043384.
    [72] SONG M, LI X M, JING S S, et al. Responses of soil nematodes to water and nitrogen additions in an old-field grassland[J]. Appl Soil Ecol, 2016, 102:53-60. doi:10.1016/j.apsoil.2016.02.011.
    [73] BONGERS T, van der MEULEN H, KORTHALS G. Inverse relationship between the nematode maturity index and plant parasite index under enriched nutrient conditions[J]. Appl Soil Ecol, 1997, 6(2):195-199. doi:10.1016/S0929-1393(96)00136-9.
    [74] ODUM E P. Trends expected in stressed ecosystems[J]. Bioscience, 1985, 35(7):419-422. doi:10.2307/1310021.
    [75] ETTEMA C H, BONGERS T. Characterization of nematode coloni-zation and succession in disturbed soil using the maturity index[J]. Biol Fert Soils, 1993, 16(2):79-85. doi:10.1007/BF00369407.
    [76] ARMSTRONG G M, ROHRBAUGH L M, RICE E L, et al. Preli-minary studies on the effect of deficiency in potassium or magnesium on concentration of chlorogenic acid and scopolin in tobacco[J]. Proc Okla Acad Sci, 1971, 51:41-43
    [77] LEHMAN R H, RICE E L. Effect of deficiencies of nitrogen, potassium and sulfur on chlorogenic acids and scopolin in sunflower[J]. Amer Midl Nat, 1972, 87(1):71-80. doi:10.2307/2423882.
    [78] LUU K T, MATCHES A G, PETERS E J. Allelopathic effects of tall fescue on birdsfoot trefoil as influenced by n fertilization and seasonal changes[J]. Agron J, 1982, 74(5):805-808. doi:10.2134/agronj1982.00021962007400050009x.
    [79] HALBRENDT J M. Allelopathy in the management of plant-parasitic nematodes[J]. J Nematol, 1996, 28(1):8-14.
    [80] van der WAL A, GEERTS R H E M, KOREVAAR H, et al. Dissimilar response of plant and soil biota communities to long-term nutrient addition in grasslands[J]. Biol Fert Soils, 2009, 45(6):663-667. doi:10.1007/s00374-009-0371-1.
    [81] DYER L A, LETOURNEAU D. Top-down and bottom-up diversity cascades in detrital vs. living food webs[J]. Ecol Lett, 2003, 6(1):60-68. doi:10.1046/j.1461-0248.2003.00398.x.
    [82] SHAO Y H, ZHANG W X, EISENHAUER N, et al. Nitrogen deposition cancels out exotic earthworm effects on plant-feeding nematode communities[J]. J Anim Ecol, 2017, 86(4):708-717. doi:10.1111/1365-2656.12660.
    [83] SONG D G, PAN K W, TARIQ A, et al. Large-scale patterns of distribution and diversity of terrestrial nematodes[J]. Appl Soil Ecol, 2017, 114:161-169. doi:10.1016/j.apsoil.2017.02.013.
    [84] de DEYN G B, RAAIJMAKERS C E, van RUIJVEN J, et al. Plant species identity and diversity effects on different trophic levels of nematodes in the soil food web[J]. Oikos, 2004, 106(3):576-586. doi:10.1111/j.0030-1299.2004.13265.x.
    [85] GUNDERSEN P, EMMETT B A, KJØNAAS O J, et al. Impact of nitrogen deposition on nitrogen cycling in forests:A synthesis of NITREX data[J]. For Ecol Manage, 1998, 101(1-3):37-55. doi:10.1016/S0378-1127(97)00124-2.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张勇群,毛庆功,王聪,王森浩,刘滔,莫江明,鲁显楷.氮沉降对土壤线虫群落影响的研究进展[J].热带亚热带植物学报,2020,28(1):105~114

复制
分享
文章指标
  • 点击次数:804
  • 下载次数: 1143
  • HTML阅读次数: 379
  • 引用次数: 0
历史
  • 收稿日期:2019-03-07
  • 最后修改日期:2019-04-14
  • 在线发布日期: 2020-01-15
文章二维码