优质牧草旋扭山绿豆对低温胁迫的生理响应及其耐寒性快速鉴定
作者:
基金项目:

广东省自然科学基金项目(2016A030313424);华南师范大学研究生创新计划项目(2018LKXM017);国家重点研发计划项目(2017YFC1200105)资助


Physiological Response of High Quality Forage Desmodium intortum to Low Temperature Stress and Rapid Identification of Its Cold Tolerance
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [55]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为了解旋扭山绿豆(Desmodium intortum)对低温的耐受性,以在南方各省广泛种植的优质牧草紫花大翼豆(Macroptilium atropurureum)为对照,研究了旋扭山绿豆对低温胁迫的生理响应。结果表明,低温胁迫(4℃)下,旋扭山绿豆的实际光能转化效率(Yield)和光合电子传递效率(ETR)在第2~8天时下降幅度显著低于紫花大翼豆(P<0.05)。低温处理使旋扭山绿豆和紫花大翼豆超氧化物歧化酶(SOD)活性显著增加(P<0.05);过氧化氢酶(CAT)活性则显著降低;旋扭山绿豆的过氧化物酶(POD)没有显著变化(P>0.05),但紫花大翼豆下降了47.11%。低温处理下旋扭山绿豆游离脯氨酸和可溶性糖含量显著高于紫花大翼豆(P<0.05)。回归分析、抵抗力指数和营养成分分析表明,旋扭山绿豆是一种抗寒性与营养价值均优于紫花大翼豆的优良牧草,其中Yield、ETR、CAT与渗透调节物质(游离脯氨酸和可溶性糖)可以作为旋扭山绿豆耐寒性鉴定的重要生理指标。

    Abstract:

    In order to rapidly identify the tolerance to low temperature of Desmodium intortum, the physiological response to low temperature stress (4℃) was studied by comparing with Macroptilium atropurureum, a high quality forage widely planted in southern provinces in China. The results showed that under low temperature stress, the effective quantum yield (Yield) and electron transfer rate (ETR) from the 2nd to 8th day decreased significantly in M. atropurureum than those in D. intortum (P<0.05). The superoxide dismutase (SOD) activity increased and catalase (CAT) activity decreased significantly (P<0.05) for both D. intortum and M. atropurureum under low temperature stress. Specifically, the decrease of CAT activity in D. intortum was lower than that in M. atropurureum. The peroxidase (POD) activity of D. intortum did not change (P>0.05) under low temperature, while POD activity in M. atropurureum decreased by 47.11%. The contents of free proline (Pro) and soluble sugar were significantly higher in D. intortum than those in M. atropurureum (P<0.05) under low temperature. According to regression analysis, resistance index and nutrient composition analysis, D. intortum was superior to M. atropurureum in cold resistance and nutritional value. Furthermore, Yield, ETR, CAT, Pro and soluble sugar of D. intortum could be used asimportant physiological indexes for identification of cold tolerance.

    参考文献
    [1] CHEN Z H, LI X Y, HONG J. Current situation, problems, and suggestions for forage germplasm resource conservation in China[J]. Pratacult Sci, 2018, 35(1):186-191. doi:10.11829/j.issn.1001-0629.2017-0155. 陈志宏, 李新一, 洪军. 我国草种质资源的保护现状、存在问题及建议[J]. 草业科学, 2018, 35(1):186-191. doi:10.11829/j.issn.1001-0629.2017-0155.
    [2] XIN L J, WANG L X, LIU A M. Regional production and consumption equilibrium of feed grain in china and its policy implication[J]. J Nat Resour, 2018, 33(6):965-977. doi:10.31497/zrzyxb.20180300. 辛良杰, 王立新, 刘爱民. 我国饲料粮区域产消平衡特征及政策启示[J]. 自然资源学报, 2018, 33(6):965-977. doi:10.31497/zrzyxb.20180300.
    [3] MO X M, CHENG S Q, ZHENG Z H, et al. The effect of Desmodium intortum on the development of eco-agriculture in Jianjiang[J]. Ecol Econ, 1994(3):47-49. 莫熙穆, 程双奇, 郑中华, 等. 旋扭山绿豆在鉴江流域生态农业发展中的作用及其栽培技术[J]. 生态经济, 1994(3):47-49.
    [4] HAN D F, LI X P, LI J, et al. Mechanism of improving cold resistance of plant by glycine betaine and its application[J]. J Trop Subtrop Bot, 2010, 18(2):210-216. doi:10.3969/j.issn.1005-3395.2010.02.016. 韩冬芳, 李雪萍, 李军, 等. 甜菜碱提高植物抗寒性的机理及其应用[J]. 热带亚热带植物学报, 2010, 18(2):210-216. doi:10.3969/j. issn.1005-3395.2010.02.016.
    [5] YANG J C, DU G F, PENG J Z. Comparison of cold resistance and nutritional quality of six tropical and subtropical leguminous forages during overwintering period[J]. Pratacult Sci, 2017, 34(4):794-801. doi:10.11829/j.issn.1001-0629.2016-0560. 杨继春, 杜贵锋, 彭建宗. 6种热带亚热带豆科牧草抗寒性及营养品质比较[J]. 草业科学, 2017, 34(4):794-801. doi:10.11829/j.issn. 1001-0629.2016-0560.
    [6] WANG C Z, QIAN S, TAN F Y, et al. Influence of winter climate on agricultural production in 2015/2016[J]. Chin J Agrometeorol, 2016, 37(2):255-257. doi:10.3969/j.issn.1000-6362.2016.02.016. 王纯枝, 钱拴, 谭方颖, 等. 2015/2016年冬季气候对农业生产的影响[J]. 中国农业气象, 2016, 37(2):255-257. doi:10.3969/j.issn. 1000-6362.2016.02.016.
    [7] WANG C L, LIU J L, ZENG X, et al. Characteristics of recent 50 year's cold damage in winter in Guangdong[J]. J Nat Disast, 2004, 13(4):121-127. doi:10.3969/j.issn.1004-4574.2004.04.021. 王春林, 刘锦銮, 曾侠, 等. 近50年来广东冬季寒害的特征[J]. 自然灾害学报, 2004, 13(4):121-127. doi:10.3969/j.issn.1004-4574.2004.04.021.
    [8] LIN Q M, CHEN Y Q, REN W B, et al. Analysis of a 2016 cold wave weather process in eastern Guangdong and an associated aquaculture disaster in the shallow offshore waters[J]. Guangdong Meteor, 2017, 39(2):7-11. doi:10.3969/j.issn.1007-6190.2017.02.002. 林巧美, 陈映强, 任文斌, 等. 2016年粤东一次寒潮天气过程及浅海养殖灾情分析[J]. 广东气象, 2017, 39(2):7-11. doi:10.3969/j. issn.1007-6190.2017.02.002.
    [9] WANG H, CHEN H H, TANG L S, et al. Temporal and spatial change of climate resources and meteorological disasters under climate change during winter crop growing season in Guangdong Province, China[J]. Chin J Appl Ecol, 2018, 29(1):93-102. doi:10.13287/j.1001-9332.201801.015. 王华, 陈慧华, 唐力生, 等. 气候变暖背景下广东冬种生产季气候资源和气象灾害的时空变化[J]. 应用生态学报, 2018, 29(1):93-102. doi:10.13287/j.1001-9332.201801.015.
    [10] CHEN X, ZHOU Z H, WANG R Q, et al. Effect of low temperature stress on antioxidant ability in Ilex verticillata leaves[J]. J Trop Subtrop Bot, 2016, 24(6):689-695. doi:10.11926/j.issn.1005-3395.2016.06.013. 陈茜, 周之涵, 王瑞琪, 等. 低温处理对北美冬青叶片抗氧化能力的影响[J]. 热带亚热带植物学报, 2016, 24(6):689-695. doi:10.11926/j.issn.1005-3395.2016.06.013.
    [11] BO X P, WANG M X, CUI L, et al. Evaluation on correlations of three kinds of osmoregulation substances in tea fresh leaves with low temperature during winter and spring respectively and their difference among cultivars[J]. Sci Agric Sin, 2016, 49(19):3807-3817. doi:10.3864/j.issn.0578-1752.2016.19.012. 薄晓培, 王梦馨, 崔林, 等. 茶树3类渗透调节物质与冬春低温相关性及其品种间的差异评价[J]. 中国农业科学, 2016, 49(19):3807-3817. doi:10.3864/j.issn.0578-1752.2016.19.012.
    [12] HABIBI F, NORMAHAMADI G H, HEIDARY S A H, et al. Effect of cold stress on cell membrane stability, chlorophyll a and b contain and proline accumulation in wheat (Triticum aiestivum L.) variety[J]. Afr J Agric Res, 2011, 6(27):5854-5859.
    [13] WANG X X, LI S D, DONG H R, et al. The correlationship of cold-tolerance with ABA, soluble sugar and respiratory intensity in tomato[J]. Acta Hort Sin, 1998, 25(1):56-60. 王孝宣, 李树德, 东惠茹, 等. 番茄品种耐寒性与ABA和可溶性糖含量的关系[J]. 园艺学报, 1998, 25(1):56-60.
    [14] BAKER N R. Chlorophyll fluorescence:A probe of photosynthesis in vivo[J]. Annu Rev Plant Biol, 2008, 59(1):89&##8211;113. doi:10.1146/annurev.arplant.59.032607.092759.
    [15] TANG M L, QUAN J C. Introduction and cultivation technology of fine breeds of green manure in orchards[J]. SW Hort, 2001, 29(3):57-58. 唐明丽, 全金成. 果园绿肥良种旋扭山绿豆引种栽培技术[J]. 西南园艺, 2001, 29(3):57-58.
    [16] YE X Z, LI Y X, ZHANG D M, et al. The relationship between the morphological and anatomical characters of vegetative organs of Desmodium intortum and the high nitrogen fixation, shade tolerance and conservation of soil and water[J]. J Trop Subtrop Bot, 1994, 2(1):31-37. 叶绣珍, 李煜祥, 张德明, 等. 旋扭山绿豆(Desmodium intortum)营养器官的形态解剖特点与高固氮、耐阴和水土保持的关系[J]. 热带亚热带植物学报, 1994, 2(1):31-37.
    [17] PEREZ-MALDONADO R A, NORTON B W. The effects of condensed tannins from Desmodium intortum and Calliandra calothyrsus on protein and carbohydrate digestion in sheep and goats[J]. Br J Nutr, 1996, 76(4):515-533. doi:10.1079/BJN19960060.
    [18] CHENG H Q, ZHANG W W, CHEN Z P, et al. Effect of overshadow on nutritional components in Desmodium intortum[J]. J S China Nor Univ (Nat Sci), 2000(3):88-91. doi:10.3969/j.issn.1000-5463.2000.03.021. 程惠青, 张文文, 陈兆平, 等. 遮荫对旋扭山绿豆的营养成分的影响[J]. 华南师范大学学报(自然科学版), 2000(3):88-91. doi:10.3969/j.issn.1000-5463.2000.03.021.
    [19] LIN D Q. High antialkaline and symbiotic nitrogen fixation activity of the fast-growing rhizobia from Desmodium intortum[J]. Acta Micro-biol Sin, 1989, 20(5):354-359. doi:10.13343/j.cnki.wsxb.1989.05.004. 林德球. 旋扭山绿豆快生型根瘤菌高度抗碱及共生固氮[J]. 微生物学报, 1989, 20(5):354-359. doi:10.13343/j.cnki.wsxb.1989.05.004.
    [20] YAO X W, CHEN Z P, CHENG S Q, et al. Expression of hydrogenase system in strain MXDI6 of rhizobium (Desmodium intortum)[J]. J Trop Subtrop Bot, 1995, 3(2):65-69. 姚小文, 陈兆平, 程双奇, 等. 旋扭山绿豆根瘤菌MXDI6菌株氢酶诱导表达[J]. 热带亚热带植物学报, 1995, 3(2):65-69.
    [21] JING Y X, CHEN Z P, CHENG H Q, et al. Root hair deformation testing of nodulation factor in rhizobium strain CB627 isolated from Desmodium intortum[J]. J Trop Subtrop Bot, 1999, 7(1):81-83. 靖元孝, 陈兆平, 程惠青, 等. 旋扭山绿豆根瘤菌CB627结瘤因子的测定[J]. 热带亚热带植物学报, 1999, 7(1):81-83.
    [22] KHAN Z R, MIDEGA C A O, WANYAMA J M, et al. Integration of edible beans (Phaseolus vulgaris L.) into the push-pull technology developed for stemborer and Striga control in maize-based cropping systems[J]. Crop Prot, 2009, 28(11):997-1006. doi:10.1016/j.cropro. 2009.05.014.
    [23] TOBISA M, UCHIDA Y. Effect of phosphorus application and arbu-scular mycorrhizal fungi inoculation on the growth of American Jointvetch and Greenleaf Desmodium[J]. Amer J Agric Biol Sci, 2017, 12(2):85-94. doi:10.3844/ajabssp.2017.85.94.
    [24] MIDEGA C A O, WASONGA C J, HOOPER A M, et al. Drought-tolerant Desmodium species effectively suppress parasitic Striga weed and improve cereal grain yields in western Kenya[J]. Crop Prot, 2017, 98:94-101. doi:10.1016/j.cropro.2017.03.018.
    [25] MIDEGA C A O, PITTCHAR J O, PICKETT J A, et al. A climate-adapted push-pull system effectively controls fall armyworm, Spodo-ptera frugiperda (J E Smith), in maize in East Africa[J]. Crop Prot, 2018, 105:10-15. doi:10.1016/j.cropro.2017.11.003.
    [26] ZHOU Y W, LIU Y P, DAI S L. Identification of cold resistant plants by chlorophyll fluorescence analysis technique[J]. Plant Physiol Commun, 2006, 42(5):945-950. 周蕴薇, 刘艳萍, 戴思兰. 用叶绿素荧光分析技术鉴定植物抗寒性的剖析[J]. 植物生理学通讯, 2006, 42(5):945-950.
    [27] YANG J M, MENG Q R, WANG X D, et al. Effects of low temperature stress and INA bacteria on chlorophyll fluorescence parameter and cold resistance in young fruits of Apricot[J]. Sci Agric Sin, 2002, 35(9):1090-1094. doi:10.3321/j.issn:0578-1752.2002.09.011. 杨建民, 孟庆瑞, 王雪冬, 等. INA细菌对杏幼果叶绿素荧光参数及抗寒性的影响[J]. 中国农业科学, 2002, 35(9):1090-1094. doi:10.3321/j.issn:0578-1752.2002.09.011.
    [28] WANG X T, LU Q W, CANG J, et al. Effects of cold acclimation on chlorophyll fluorescence characteristics and antioxidant enzyme activity in winter wheat[J]. Plant Physiol J, 2016, 52(12):1959-1969. doi:10.13592/j.cnki.ppj.2016.0352. 王秀田, 卢秋巍, 苍晶, 等. 低温驯化对冬小麦叶绿素荧光特性及抗氧化酶活性的影响[J]. 植物生理学报, 2016, 52(12):1959-1969. doi:10.13592/j.cnki.ppj.2016.0352.
    [29] GAO C H, HU J, ZHENG Y Y, et al. Antioxidant enzyme activities and proline content in maize seedling and their relationships to cold endurance[J]. Chin J Appl Ecol, 2006, 17(6):1045-1050. 高灿红, 胡晋, 郑昀晔, 等. 玉米幼苗抗氧化酶活性、脯氨酸含量变化及与其耐寒性的关系[J]. 应用生态学报, 2006, 17(6):1045-1050.
    [30] TENG S H, LAI Z Q. High yield cultivation and utilization of legu-minous forage Macroptilium atropurpureum[J]. Shanghai J Animal Husbandry Vet Med, 2013(5):52-53. doi:10.3969/j.issn.1000-7725.2013.05.027. 滕少花, 赖志强. 优良豆科牧草大翼豆高产栽培与利用[J]. 上海畜牧兽医通讯, 2013(5):52-53. doi:10.3969/j.issn.1000-7725.2013.05.027.
    [31] GRAY G R, CHAUVIN L P, SARHAN F, et al. Cold acclimation and freezing tolerance (a complex interaction of light and temperature)[J]. Plant Physiol, 1997, 114(2):467-474. doi:10.1104/pp.114.2.467.
    [32] SCHREIBER U, SCHLIWA U, BILGER W. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quen-ching with a new type of modulation fluorometer[J]. Photosyn Res, 1986, 10(1/2):51-62. doi:10.1007/BF00024185.
    [33] ZHU Z J, WEI G Q, LI J, et al. Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.)[J]. Plant Sci, 2004, 167(3):527-533. doi:10.1016/j.plantsci.2004.04.020.
    [34] AL-AGHABARY K, ZHU Z J, SHI Q H. Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress[J]. J Plant Nutr, 2005, 27(12):2101-2115. doi:10.1081/PLN-200034641.
    [35] ZHANG Z L, QU W J. The Experimental Guide for Plant Physiology[M]. 3rd ed. Beijing:Higher Education Press, 2003:123-124. 张志良, 瞿伟菁. 植物生理学实验指导[M]. 第3版. 北京:高等教育出版社, 2003:123-124.
    [36] ZHAO S J, XU C C, ZOU Q, et al. Improvements of method for measurement of malondialdehyde in plant tissues[J]. Plant Physiol Commun, 1994, 30(3):207-210. 赵世杰, 许长成, 邹琦, 等. 植物组织中丙二醛测定方法的改进[J]. 植物生理学通讯, 1994, 30(3):207-210.
    [37] ORWIN K H, WARDLE D A. New indices for quantifying the resi-stance and resilience of soil biota to exogenous disturbances[J]. Soil Biol Biochem, 2004, 36(11):1907-1912. doi:10.1016/j.soilbio.2004.04.036.
    [38] Yunnan Jinye Ecological Construction Group. A well-nourished legu-minous forage:Macroptilium atropurpureum[J]. Farmer Sci Technol, 2010(5):8. 云南今业生态建设集团. 营养全面的豆科牧草——大翼豆[J]. 农家科技, 2010(5):8.
    [39] PA M X, HUANG Z W. Chemical composition and nutrition evaluation of 38 forage grass in Guangxi Province, China[J]. Guangxi J Animal Husbandry Vet Med, 2014, 30(6):287-289. doi:10.3969/j.issn.1002-5235.2014.06.002. 帕明秀, 黄志伟. 广西38种牧草的化学成分分析及营养价值评定[J]. 广西畜牧兽医, 2014, 30(6):287-289. doi:10.3969/j.issn.1002-5235.2014.06.002.
    [40] GENTY B, BRIANTAIS J M, BAKER N R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. Biochim Biophys Acta, 1989, 990(1):87-92. doi:10.1016/S0304-4165(89)80016-9.
    [41] ROHÁČEK K. Chlorophyll fluorescence parameters:the definitions, photosynthetic meaning, and mutual relationships[J]. Photosynthetica, 2002, 40(1):13-29. doi:10.1023/A:1020125719386.
    [42] WU X X, YANG X C, ZHU Z W, et al. Effects of exogenous 6-BA on photosynthesis, chlorophyll fluorescence characteristics and the allocation of absorbed light in eggplant seedlings under low temperature stress[J]. Plant Physiol J, 2013, 49(11):1181-1188. doi:10.13592/j.cnki.ppj. 2013.11.003. 吴雪霞, 杨晓春, 朱宗文, 等. 外源6-BA对低温胁迫下茄子幼苗光合作用、叶绿素荧光参数及光能分配的影响[J]. 植物生理学报, 2013, 49(11):1181-1188. doi:10.13592/j.cnki.ppj.2013.11.003.
    [43] LIAO D B, BAI K D, CAO K F, et al. Seasonal changes in photo-synthetic traits of the co-occurring evergreen and deciduous broad-leaved species in a montane forest of Mao'er Mountain, Guangxi[J]. J Trop Subtrop Bot, 2008, 16(3):205-211. doi:10.3969/j.issn.1005-3395.2008.03.004. 廖德宝, 白坤栋, 曹坤芳, 等. 广西猫儿山中山森林共生的常绿和落叶阔叶树光合特性的季节变化[J]. 热带亚热带植物学报, 2008, 16(3):205-211. doi:10.3969/j.issn.1005-3395.2008.03.004.
    [44] SUN B Y, SUN L L, SONG L Y, et al. Contrasting changes of chlorophyll fluorescence in leaves of invasive Wedelia trilobata at different temperatures under high irradiance stress[J]. J S China Norm Univ (Nat Sci), 2009(4):100-105. 孙蓓育, 孙兰兰, 宋莉英, 等. 入侵植物三裂叶蟛蜞菊叶片叶绿素荧光对温度的响应[J]. 华南师范大学学报(自然科学版), 2009(4):100-105.
    [45] FU J J, LIU J, SUN Y F, et al. Effects of cold stress on the growths and physiological characteristics of two Elymus nutans varieties[J]. Acta Agrest Sin, 2014, 22(4):789-795. doi:10.11733/j.issn.1007-0435.2014.04.017. 付娟娟, 刘建, 孙永芳, 等. 冷胁迫对2种垂穗披碱草生长和生理特性的影响[J]. 草地学报, 2014, 22(4):789-795. doi:10.11733/j. issn.1007-0435.2014.04.017.
    [46] LI C Y, XU W, LIU L W, et al. Changes of endogenous hormone contents and antioxidative enzyme activities in wheat leaves under low temperature stress at jointing stage[J]. Chin J Appl Ecol, 2015, 26(7):2015-2022. doi:10.13287/j.1001-9332.20150527.004. 李春燕, 徐雯, 刘立伟, 等. 低温条件下拔节期小麦叶片内源激素含量和抗氧化酶活性的变化[J]. 应用生态学报, 2015, 26(7):2015-2022. doi:10.13287/j.1001-9332.20150527.004.
    [47] TIAN J H, WANG H X, ZHANG Z H, et al. Effects of chilling stress on antioxidant system and ultrastructure of walnut cultivars[J]. Chin J Appl Ecol, 2015, 26(5):1320-1326. doi:10.13287/j.1001-9332.20150319.004. 田景花, 王红霞, 张志华, 等. 低温逆境对不同核桃品种抗氧化系统及超微结构的影响[J]. 应用生态学报, 2015, 26(5):1320-1326. doi:10.13287/j.1001-9332.20150319.004.
    [48] YE Y R, WANG W L, ZHENG C S, et al. Evaluation of cold resistance of four wild Carex species[J]. Chin J Appl Ecol, 2017, 28(1):89-95. doi:10.13287/j.1001-9332.201701.035. 叶艳然, 王文莉, 郑成淑, 等. 四种野生苔草属植物的耐寒性评价[J]. 应用生态学报, 2017, 28(1):89-95. doi:10.13287/j.1001-9332.201701.035.
    [49] ASHRAF M, FOOLAD M R. Roles of glycine betaine and proline in improving plant abiotic stress resistance[J]. Environ Exp Bot, 2007, 59(2):206-216.
    [50] DENG R J, FAN J X, WANG Y Q, et al. Physiological responses of pitaya (Hylocereus spp.) seedlings to chilling stress and comprehensive evaluation of their cold resistance[J]. Plant Physiol J, 2014, 50(10):1529-1534. doi:10.13592/j.cnki.ppj.2014.0174. 邓仁菊, 范建新, 王永清, 等. 火龙果幼苗对低温胁迫的生理响应及其抗寒性综合评价[J]. 植物生理学报, 2014, 50(10):1529-1534. doi:10.13592/j.cnki.ppj.2014.0174.
    [51] LIANG J Y, JIAO T, WU J P, et al. The relationship between seasonal forage digestibility and forage nutritive value in different grazing pastures[J]. Acta Pratacult Sin, 2015, 24(6):108-115. doi:10.11686/cyxb2014140. 梁建勇, 焦婷, 吴建平, 等. 不同类型草地牧草消化率季节动态与营养品质的关系研究[J]. 草业学报, 2015, 24(6):108-115. doi:10.11686/cyxb2014140.
    [52] ZHANG S X, NIMA P C, XU Y M, et al. Physiological responses to low temperature stress and cold tolerance evaluation in three Elymus species[J]. Pratacult Sci, 2016, 33(6):1154-1163. doi:10.11829/j.issn. 1001-0629.2015-0489. 张尚雄, 尼玛平措, 徐雅梅, 等. 3个披碱草属牧草对低温胁迫的生理响应及苗期抗寒性评价[J]. 草业科学, 2016, 33(6):1154-1163. doi:10.11829/j.issn.1001-0629.2015-0489.
    [53] BOUCOT A J. The complexity and stability of ecosystems[J]. Nature, 1985, 315(6021):635-636. doi:10.1038/315635c0.
    [54] XIN Y C. The analysis of nutrition ingredient of grass in Qinghai natural grassland[J]. Qinghai Pratacult, 2011, 20(1):26-31,9. doi:10.3969/j.issn.1008-1445.2011.01.008. 辛玉春. 青海天然草地牧草营养成分分析[J]. 青海草业, 2011, 20(1):26-31,9. doi:10.3969/j.issn.1008-1445.2011.01.008.
    [55] CHEN P, LIANG F Y, LI R T, et al. Nutritional composition analysis of several forages in Guangxi Province, China[J]. Guangxi Agric Sci, 1983(1):46-49. 陈平, 梁发英, 李瑞棠, 等. 广西几种牧草营养成分分析[J]. 广西农业科学, 1983(1):46-49.
    相似文献
    引证文献
引用本文

余涵霞,姜朝阳,王纯,LIN Yi-han,纪雅萍,李伟华.优质牧草旋扭山绿豆对低温胁迫的生理响应及其耐寒性快速鉴定[J].热带亚热带植物学报,2019,27(6):649~658

复制
分享
文章指标
  • 点击次数:746
  • 下载次数: 722
  • HTML阅读次数: 336
  • 引用次数: 0
历史
  • 收稿日期:2019-01-25
  • 最后修改日期:2019-03-11
  • 在线发布日期: 2019-11-29
文章二维码