中国东南部不同海拔亚热带森林中马尾松径向生长对气候的响应
作者:
基金项目:

国家自然科学基金项目(41861124001,31570584,41661144007);中国科学院国际合作重点项目(GJHZ1752);中国科学院百人计划项目;广东自然科学基金项目(2016A030313152)资助


Elevational Heterogeneity in Radial Growth-climate Association of Pinus massoniana in Southeastern China
Author:
  • LI Jing-ye

    LI Jing-ye

    Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;University of Chinese Academy of Sciences, Beijing 100049, China;Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • HUANG Jian-guo

    HUANG Jian-guo

    Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIANG Han-xue

    LIANG Han-xue

    Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • JIANG Shao-wei

    JIANG Shao-wei

    Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;University of Chinese Academy of Sciences, Beijing 100049, China;Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHOU Peng

    ZHOU Peng

    Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;University of Chinese Academy of Sciences, Beijing 100049, China;Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • GUO Xia-li

    GUO Xia-li

    Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;University of Chinese Academy of Sciences, Beijing 100049, China;Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Jun-tang

    LI Jun-tang

    State-owned Longmenghe Forestry Station of Xingshan County, Yichang 443700, Hubei, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了解我国东南部亚热带森林不同海拔树木生长对气候响应的差异,建立了福建省武夷山脉东麓2个样点的4个马尾松(Pinus massoniana)轮宽年表,对树木径向生长与气候因子进行了bootstrapped相关分析和线性混合模型(LME)拟合。结果表明,在高海拔地区马尾松径向生长对气候因子年际波动敏感性较强,主要表现为与生长季前冬季光温条件以及生长季内7月降水的正相关,生长-气候关系在不同样点间表现出较强的一致性。线性混合模型可以较好地拟合高海拔树木生长变化,当使用前1年12月平均日最高温、当年1月日照时长和当年7月降雨量3个气候变量进行拟合时,模型解释量达到0.5,其中前1年12月最高温和当年1月日照时数在模型中起到主导作用,累积相对贡献率约占80%,说明生长季前冬季的光热条件是限制高海拔马尾松径向生长最主要的气候因子。因此,我国亚热带地区高海拔的树木径向生长可能对未来气候变化有更强的敏感性,相关森林管理政策的制定需要将此纳入考虑;同时我国亚热带地区高海拔森林中的树木有被用于树轮气候重建的潜力。

    Abstract:

    To achieve a better understanding about the elevation heterogeneity in tree growth-climate association in southeastern China, four tree-ring width chronologies of Pinus massoniana from eastern foot of Wuyi Mountains in Fujian were established, and the relationship between radial growth and climate factors along elevation were investigated by bootstrapped correlation analysis and linear mixed effect model (LME). The results showed that radial growth of trees at higher elevation had higher sensitivity to climate and higher consistency between sites, mainly reflected as the positive correlations with the winter-spring temperature/sunshine conditions and precipitation in July. Moreover, the linear mixed effect model using three monthly climate factors, such as monthly mean daily maximum temperature in last December, monthly total sunshine hours in current January, and monthly total precipitation in current July, can explain 50% of total variance of radial growth at higher elevation, and the both fronts play a leading role in the model with cumulative relative contribution rate of 80%. So, it was suggested that the pre-growing season temperature/sunshine condition are the main factor regulating tree radial growth at high elevation, and that these trees might have higher sensitivity to future climate changes and forest management policies should take this into account. Moreover, the results showed that the trees at high elevation in subtropical forest had the potential to be used for tree ring-climate reconstruction.

    参考文献
    [1] YIN Y H, MA D Y, WU S H. Climate change risk to forests in China associated with warming[J]. Sci Rep, 2018, 8:493. doi:10.1038/s 41598-017-18798-6.
    [2] PEROS M C, GAJEWSKI K, VIAU A E. Continental-scale tree popu-lation response to rapid climate change, competition and disturbance[J]. Glob Ecol Biogeogr, 2008, 17(5):658-669. doi:10.1111/j.1466-8238.2008.00406.x.
    [3] KHANDURI V P, SHARMA C M, SINGH S P. The effects of climate change on plant phenology[J]. Environmentalist, 2008, 28(2):143-147. doi:10.1007/s10669-007-9153-1.
    [4] HUANG J G, TARDIF J C, BERGERON Y, et al. Radial growth response of four dominant boreal tree species to climate along a latitudinal gradient in the eastern Canadian boreal forest[J]. Glob Change Biol, 2010, 16(2):711-731. doi:10.1111/j.1365-2486.2009.01990.x.
    [5] JIANG X Y, HUANG J G, STADT K J, et al. Spatial climate-dependent growth response of boreal mixed wood forest in western Canada[J]. Glob Planet Change, 2016, 139:141-150. doi:10.1016/j. gloplacha. 2016.02.002.
    [6] dos SANTOS V A H F, FERREIRA M J, RODRIGUES J V F C, et al. Causes of reduced leaf-level photosynthesis during strong El Niño drought in a Central Amazon forest[J]. Glob Change Biol, 2018, 24(9):4266-4279. doi:10.1111/gcb.14293.
    [7] SLIK J W F. El Niño droughts and their effects on tree species compo-sition and diversity in tropical rain forests[J]. Oecologia, 2004, 141(1):114-120. doi:10.1007/s00442-004-1635-y.
    [8] WILLIAMSON G B, LAURANCE W F, OLIVEIRA A A, et al. Ama-zonian tree mortality during the 1997 El Niño drought[J]. Conserv Biol, 2000, 14(5):1538-1542. doi:10.1046/j.1523-1739.2000.99298.x.
    [9] NAKAGAWA M, TANAKA K, NAKASHIZUKA T, et al. Impact of severe drought associated with the 1997-1998 El Niño in a tropical forest in Sarawak[J]. J Trop Ecol, 2000, 16(3):355-367. doi:10.1017/S0266467400001450.
    [10] FANG K Y, GOU X H, CHEN F H, et al. The advance of dendro-ecology[J]. J Glaciol Geocryol, 2008, 30(5):825-834. 方克艳, 勾晓华, 陈发虎, 等. 树轮生态学研究进展[J]. 冰川冻土, 2008, 30(5):825-834.
    [11] MARTIN-BENITO D, PEDERSON N, KÖSE N, et al. Pervasive effects of drought on tree growth across a wide climatic gradient in the temperate forests of the Caucasus[J]. Glob Ecol Biogeogr, 2018, 27(11):1314-1325. doi:10.1111/geb.12799.
    [12] CHRISTIE D A, LARA A, BARICHIVICH J, et al. El Niño-Southern Oscillation signal in the world's highest-elevation tree-ring chrono-logies from the Altiplano, central Andes[J]. Palaeogeogr Palaeocl Palaeoecol, 2009, 281(3/4):309-319. doi:10.1016/j.palaeo.2007.11.013.
    [13] SAVVA Y, OLEKSYN J, REICH P B, et al. Interannual growth response of Norway spruce to climate along an altitudinal gradient in the Tatra Mountains, Poland[J]. Trees, 2006, 20(6):735-746. doi:10.1007/s00468-006-0088-9.
    [14] ZHANG H, SHAO X M, ZHANG Y. Research progress on the response of radial growth to climatic factors at different altitudes[J]. J Earth Environ, 2012, 3(3):845-854. 张慧, 邵雪梅, 张永. 不同海拔高度树木径向生长对气候要素响应的研究进展[J]. 地球环境学报, 2012, 3(3):845-854.
    [15] KANG Y X, LIU J H, DAI S F, et al. Characteristics of ring-width chronologies of Larix chinensis and their responses to climate change at different elevations in Taibai Mountain[J]. J NW Agric For Univ (Nat Sci), 2010, 38(12):141-147. 康永祥, 刘婧辉, 代拴发, 等. 太白山不同海拔太白红杉年轮生长对气候变化的响应[J]. 西北农林科技大学学报(自然科学版), 2010, 38(12):141-147.
    [16] LEI J P, XIAO W F, HUANG Z L, et al. Responses of ring width of Pinus massoniana to the climate change at different elevations in Zigui County, Three-Gorge Reservoir area[J]. Sci Silv Sin, 2009, 45(2):33-39. 雷静品, 肖文发, 黄志霖, 等. 三峡库区秭归县不同海拔马尾松径向生长对气候的响应[J]. 林业科学, 2009, 45(2):33-39.
    [17] LYU L, DENG X, ZHANG Q B. Elevation pattern in growth cohe-rency on the southeastern Tibetan Plateau[J]. PLoS One, 2016, 11(9):e0163201. doi:10.1371/journal.pone.0163201.
    [18] ZHOU Z X. Masson Pine in China[M]. Beijing:China Forestry Press, 2001. 周政贤. 中国马尾松[M]. 北京:中国林业出版社, 2001.
    [19] HOU H Y. Vegetation of China with reference to its geographical distribution[J]. Ann Miss Bot Gard, 1983, 70(3):509-548. doi:10.2307/2992085.
    [20] HOLMES R L, ADAMS R K, FRITTS H C. Tree-ring chronologies of western North America:California, eastern Oregon and northern Great Basin, with procedures used in the chronology development work, including users manuals for computer programs COFECHA and ARSTAN[R]. Tucson:Laboratory of Tree-Ring Research, University of Arizona, Tucson. Chronol Ser No VI, 1986.
    [21] COOK E R, HOLMES R L. Users manual for program ARSTAN[R]. Tucson:Laboratory of Tree-Ring Research, University of Arizona, Tucson, USA, 1986.
    [22] ZANG C. R:The bootRes package for response and correlation function analysis Dendrochronologia[CP]. Franco:Franco Biondi Dendroclimatic Calibration, 2012. doi:10.1016/j.dendro.2012.08.001.
    [23] LI D W, FANG K Y, LI Y J, et al. Climate, intrinsic water-use efficiency and tree growth over the past 150 years in humid subtropical China[J]. PLoS One, 2017, 12(2):e0172045. doi:10.1371/journal. pone.0172045.
    [24] CHEN F, YUAN Y J, YU S L, et al. Influence of climate warming and resin collection on the growth of Masson pine (Pinus massoniana) in a subtropical forest, southern China[J]. Trees, 2015, 29(5):1423-1430. doi:10.1007/s00468-015-1222-3.
    [25] LI L L, SHI J F, HOU X Y, et al. High altitude Pinus taiwanensis Hayata growth response to climate in Jiulongshan and Guniujiang, southeastern China[J]. Chin J Appl Ecol, 2014, 25(7):1849-1856. 李玲玲, 史江峰, 侯鑫源, 等. 中国东南高海拔黄山松生长对气候的响应——以浙江省九龙山和安徽省牯牛降为例[J]. 应用生态学报, 2014, 25(7):1849-1856.
    [26] BATES D M, MÄCHLER M, BOLKER B M, et al. Fitting linear mixed-effects models using lme4[J]. J Statis Software, 2015, 67(1):1-48. doi:10.18637/jss.v067.i01.
    [27] WINTER B. Linear models and linear mixed effects models in R with linguistic applications[M/OL]. arXiv:1308.5499, 2013.
    [28] Grömping U. Relative importance for linear regression in R:The Package relaimpo[J]. J Stat Software, 2006, 17(1):1-27.
    [29] FRITTS H C, SHATZ D J. Selecting and characterizing tree-ring chro-nologies for dendroclimatic analysis[J]. Tree-Ring Bull, 1975, 35:31-40.
    [30] ENSMINGER I, SCHMIDT L, LLOYD J. Soil temperature and intermittent frost modulate the rate of recovery of photosynthesis in Scots pine under simulated spring conditions[J]. New Phytol, 2008, 177(2):428-442. doi:10.1111/j.1469-8137.2007.02273.x.
    [31] ROSSI S, ANFODILLO T, ČUFAR K, et al. Pattern of xylem phenology in conifers of cold ecosystems at the northern Hemisphere[J]. Glob Change Biol, 2016, 22(11):3804-3813. doi:10.1111/gcb. 13317.
    [32] HUANG J G, GUO X L, ROSSI S. Intra-annual wood formation of subtropical Chinese red pine shows better growth in dry season than wet season[J]. Tree Physiol, 2018, 38(8):1225-1236. doi:10.1093/treephys/tpy046.
    [33] PELLERIN M, DELESTRADE A, MATHIEU G, et al. Spring tree phenology in the Alps:Effects of air temperature, altitude and local topography[J]. Eur J For Res, 2012, 131(6):1957-1965. doi:10.1007/s10342-012-0646-1.
    [34] ZHANG D P. A preliminary study of the relationships between the activity of stem cambium forming xylem and rainfall and temperature in Pinus massoniana[J]. J Fujian Coll For, 1994, 14(3):215-219. 张大鹏. 马尾松茎木质部产生与水热关系的初报[J]. 福建林学院学报, 1994, 14(3):215-219.
    [35] TRANQUILLINI W, HAVRANEK W M, ECKER P. Effects of atmo-spheric humidity and acclimation temperature on the temperature response of photosynthesis in young Larix decidua Mill.[J]. Tree Physiol, 1986, 1(1):37-45. doi:10.1093/treephys/1.1.37.
    [36] TANJA S, BERNINGER F, VESALA T, et al. Air temperature triggers the recovery of evergreen boreal forest photosynthesis in spring[J]. Glob Change Biol, 2003, 9(10):1410-1426. doi:10.1046/j.1365-2486.2003.00597.x.
    [37] OLEKSYN J, ZYTKOWIAK R, KAROLEWSKI P, et al. Genetic and environmental control of seasonal carbohydrate dynamics in trees of diverse Pinus sylvestris populations[J]. Tree Physiol, 2000, 20(12):837-847. doi:10.1093/treephys/20.12.837.
    [38] ROSSI S, DESLAURIERS A, GRIÇAR J, et al. Critical temperatures for xylogenesis in conifers of cold climates[J]. Glob Ecol Biogeogr, 2008, 17(6):696-707. doi:10.1111/j.1466-8238.2008.00417.x.
    [39] WU S H, JANSSON P E, KOLARI P. The role of air and soil tempe-rature in the seasonality of photosynthesis and transpiration in a boreal Scots pine ecosystem[J]. Agric For Meteorol, 2012, 156:85-103. doi:10.1016/j.agrformet.2012.01.006.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

黎敬业,黄建国,梁寒雪,蒋少伟,周鹏,郭霞丽,李军堂.中国东南部不同海拔亚热带森林中马尾松径向生长对气候的响应[J].热带亚热带植物学报,2019,27(6):633~641

复制
分享
文章指标
  • 点击次数:682
  • 下载次数: 617
  • HTML阅读次数: 389
  • 引用次数: 0
历史
  • 收稿日期:2019-01-05
  • 最后修改日期:2019-02-18
  • 在线发布日期: 2019-11-29
文章二维码