冰菜盐胁迫下的转录组分析
作者:
基金项目:

福建省公益类科研院所专项(2018R1101025-2)资助


Transcriptome Analysis of Mesembryanthemum crystallinum under Salt Stress
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    为了解冰菜(Mesembryanthemum crystallinum)叶片抗盐相关基因组学,利用Illumina Hi-seq TM2500高通量测序技术研究冰菜叶片在400 mmol L-1 NaCl胁迫下转录组基因的差异表达。结果表明,从400 mmol L-1 NaCl胁迫和对照的冰菜叶片中共获得13.01 Gb Clean data,Q30碱基均大于90.08%。共获得123个差异表达基因(DEGs),包括73个上调基因,50个下调基因,其中功能注释的基因有96个。根据Unigene库序列进行GO、COG和KEGG注释,筛选出8个与抗盐性相关差异表达基因,植物激素代谢相关基因,脱落酸8'-羟基化酶、吲哚-3-乙酰酸酰胺合成酶和茉莉酮酸酯ZIM结构域蛋白基因均下调表达,生长素响应蛋白、细胞分裂素合酶基因则上调表达,糖代谢相关基因棉子糖合成酶基因上调表达,质膜H+-ATPase基因上调表达,脱水蛋白基因下调表达。这为冰菜耐盐基因组学和分子生物学的研究奠定基础。

    Abstract:

    In order to understand the salt related genomics in leaves of Mesembryanthemum crystallinum, the expression of transcriptome genes was studied under 400 mmol L-1 NaCl stress by using Illumina Hiseq TM2500 high-throughput sequencing technology. The results showed that there were 13.01 Gb Clean Data from the leaves treated with 400 mmol L-1 NaCl and untreated, the Q30 base was more than 90.08%. Among them, there were 123 differential expression genes (DEGs), including 73 up-regulated genes and 50 down-regulated genes, in which 96 genes were annotated. The eight salt-resistance DEGs of were screened out based on GO, COG and KEGG annotation. The plant hormone metabolism-related genes, including abscisic acid 8'-hydroxylase gene, indole-3-acetamide synthase gene, jasmonate ZIM structure domain protein gene were down-regulated, auxin responsive protein and cytokinin synthase genes were up-regulated. The sugar metabolism-related raffinose synthase genes was up-regulated, and plasma membrane H+-ATPase and dehydrated protein genes were up and down-regulated, respectively. These would provide a foundation for studing on salt tolerance genomics and molecular biology of M. crystallinum.

    参考文献
    [1] LU L M, WU F M, ZHANG Q, et al. Growth and physiological indexes of Ixora collinea ‘Gillettese How’ under Nacl stress[J]. J Trop Subtrop Bot, 2015, 23(3):262-267. doi:10.11926/j.issn.1005-3395. 2015.03.005.陆銮眉, 吴福妹, 张琼, 等. NaCl胁迫对大黄龙船花生长及生理生化的影响[J]. 热带亚热带植物学报, 2015, 23(3):262-267. doi:10. 11926/j.issn.1005-3395.2015.03.005.
    [2] LI G L, HU Z H, LENG P S. The physiological responses of Mesem-bryanthemum crystallinum L. to NaCl stress[J]. J Beijing Univ Agric, 2015, 30(1):64-70. doi:10.13473/j.cnki.issn.1002-3186.2015.0004.李广鲁, 胡增辉, 冷平生. 冰叶日中花对NaCl胁迫的生理响应[J]. 北京农学院学报, 2015, 30(1):64-70. doi:10.13473/j.cnki.issn.1002-3186.2015.0004.
    [3] XU W F, QIN H Y, LIU J, et al. Changes of oxidative stress and anti-oxidant enzyme activity of Mesembryanthemum crystallinum Linnaeus in response to different concentrations of seawater[J]. Jiangsu J Agric Sci, 2017, 33(4):775-781. doi:10.3969/j.issn.1000-4440.2017.04.008.徐微风, 覃和业, 刘姣, 等. 冰菜在不同浓度海水胁迫下的氧化胁迫和抗氧化酶活性变化[J]. 江苏农业学报, 2017, 33(4):775-781. doi:10.3969/j.issn.1000-4440.2017.04.008.
    [4] CHEN H Y. The biological characteristics and cultivation techniques of Mesembryanthemum crystallinum L.[J]. Vegetables, 2016, (8):42-45. doi:10.3969/j.issn.1001-8336.2016.08.015.陈宏毅. 冰菜的生物学特性与栽培技术[J]. 蔬菜, 2016, (8):42-45. doi:10.3969/j.issn.1001-8336.2016.08.015.
    [5] ŚLesak I, Libik M, Miszalski Z. The foliar concentration of hydrogen peroxide during salt-induced C3-CAM transition in Mesem-bryanthemum crystallinum L.[J]. Plant Sci, 2008, 174(2):221-226. doi:10.1016/j.plantsci.2007.11.007.
    [6] OH D H, BARKLA B J, VERAESTRELLA R, et al. Cell type-specific responses to salinity-the epidermal bladder cell transcriptome of Mesembryanthemum crystallinum[J]. New Phytol, 2015, 207(3):627-644. doi:10.1111/nph.13414.
    [7] COSENTINO C, FISCHER-SCHLIEBS E, BERTL A, et al. Na+/H+ antiporters are differentially regulated in response to NaCl stress in leaves and roots of Mesembryanthemum crystallinum[J]. New Phytol, 2010, 186(3):669-680. doi:10.1111/j.1469-8137.2010.03208.x.
    [8] HIZ M C, CANHER B, NIRON H, et al. Transcriptome analysis of salt tolerant common bean (Phaseolus vulgaris L.) under saline conditions[J]. PLoS One, 2014, 9(3):e92598. doi:10.1371/journal.pone.0092598.
    [9] LIU J T, ZHOU Y L, LUO C X, et al. De novo transcriptome sequencing of desert herbaceous Achnatherum splendens (Achnatherum) seedlings and identification of salt tolerance genes[J/OL]. Genes, 2016, 7(4):12. doi:10.3390/genes7040012.
    [10] SONG B, HU A H, HALIL kurban. Transcriptome analysis of differentially expressed genes in Hippophae rhamnoides L. under salt stress[J]. J Xinjiang Agric Univ, 2017, 40(2):92-98. doi:10.3969/j. issn.1007-8614.2017.02.003.宋彬, 胡安鸿, 海利力·库尔班. 沙棘NaCl胁迫下差异表达基因的转录组分析[J]. 新疆农业大学学报, 2017, 40(2):92-98. doi:10. 3969/j.issn.1007-8614.2017.02.003.
    [11] JI F S, LI Y Y, TANG L, et al. Analysis of banana leaves responses salt stress of transcriptome[J]. Mol Plant Breed, 2017, 15(3):875-882.吉福桑, 李元元, 唐露, 等. 香蕉叶片响应盐胁迫转录组分析[J]. 分子植物育种, 2017, 15(3):875-882.
    [12] FU C, SUN Y G, FU G R. Advances of salt tolerance mechanism inhylophyate plants[J]. Biotechnol Bull, 2013(1):1-7. 付畅, 孙玉刚, 傅桂荣. 盐生植物耐盐分子机制的研究进展[J]. 生物技术通报, 2013(1):1-7.
    [13] DEYHOLOS M K. Making the most of drought and salinity trans-criptomics[J]. Plant Cell Environ, 2010, 33(4):648-654. doi:10.1111/j.1365-3040.2009.02092.x.
    [14] SAHU B B, SHAW B P. Isolation, identification and expression analysis of salt-induced genes in Suaeda maritima, a natural halophyte, using PCR-based suppression subtractive hybridization[J]. BMC Plant Biol, 2009, 9:69. doi:10.1186/1471-2229-9-69.
    [15] Epstein E, Bloom A J. Mineral Nutrition of Plants:Principles and Perspectives[M]. 2nd ed. Sunderland (Massachusetts):Sinauer Associates, 2005:1-400.
    [16] LIU H L, ZHENG L M, LIU Q Q, et al. Studies on the transcriptomes of non-model organisms[J]. Hereditas, 2013, 35(8):955-970. doi:10. 3724/SP.J.1005.2013.00955.刘红亮, 郑丽明, 刘青青, 等. 非模式生物转录组研究[J]. 遗传, 2013, 35(8):955-970. doi:10.3724/SP.J.1005.2013.00955.
    [17] MUNNS R, TESTER M. Mechanisms of salinity tolerance[J]. Annu Rev Plant Biol, 2008, 59:651-681. doi:10.1146/annurev.arplant.59. 032607.092911.
    [18] TÜRKAN I, DEMIRAL T. Recent developments in understanding salinity tolerance[J]. Environ Exp Bot, 2009, 67(1):2-9. doi:10. 1016/j.envexpbot.2009.05.008.
    [19] LIU N G, WANG Z Y, MO B B, et al. Plasma membrane H+-ATPase and environmental stress[J]. J Trop Subtrop Bot, 2006, 14(3):263-268. doi:10.3969/j.issn.1005-3395.2006.03.017.刘尼歌, 王占义, 莫丙波, 等. 质膜H+-ATPase与环境胁迫[J]. 热带亚热带植物学报, 2006, 14(3):263-268. doi:10.3969/j.issn.1005-3395.2006.03.017.
    [20] MICHELET B, BOUTRY M. The plasma membrane H+-ATPase:A highly regulated enzyme with multiple physiological functions[J]. Plant Physiol, 1995, 108(1):1-6. doi:10.1104/pp.108.1.1.
    [21] PALMGREN M G. Regulation of plant plasma membrane H+-ATPase activity[J]. Physiol Plant, 1991, 83(2):314-323. doi:10.1111/j.1399-3054.1991.tb02159.x.
    [22] ZHOU C F, LIN P, YAO X H, et al. Selection of reference genes for quantitative real-time PCR in six oil-tea camellia based on RNA-seq[J]. Mol Biol, 2013, 47(6):836-851. doi:10.1134/S0026893313060198.
    相似文献
    引证文献
引用本文

练冬梅,赖正锋,姚运法,林碧珍,洪建基.冰菜盐胁迫下的转录组分析[J].热带亚热带植物学报,2019,27(3):279~284

复制
分享
文章指标
  • 点击次数:837
  • 下载次数: 787
  • HTML阅读次数: 500
  • 引用次数: 0
历史
  • 收稿日期:2018-07-16
  • 在线发布日期: 2019-05-28
文章二维码