寄主植物的功能性状对桑寄生寄主专一性的影响初探
作者:

Preliminary Studies on Effects of Host Functional Traits on Host Specificity of Mistletoe Species
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [57]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为探讨寄主多样性和寄主功能性状对桑寄生植物的寄主专一性的影响,调查了西双版纳热带植物园内桑寄生和寄主植物种类。结果表明,桑寄生植物共有2科5属6种1变种,感染隶属于58科190属286种寄主植物1 323株。桑寄生在不同生境的寄生强度具有极显著差异(P<0.01),单一种植园的寄生强度最高,而在森林的分布最少。不同种类桑寄生的寄主范围存在较大差异,专一性程度(H')为1.92~7.05,多度较高的植物更容易被感染。冗余分析表明,寄主植物的胸径、树皮含水量和树皮粗糙度对不同桑寄生的寄主利用差异有显著影响,而木质密度和树皮pH的影响不显著。因此,不同种类桑寄生在热带植物群落的寄主专一性程度有较大差异,对寄主植物特定功能性状的偏好能解释部分差异。

    Abstract:

    In order to understand the effect of host diversity and functional traits on host specificity of mistletoe, the mistletoe and host species as well as the degree of host specificity of mistletoe in Xishuangbanna Tropical Botanical Garden were investigated. The results showed that there were 1 323 host individuals, belonging to 58 families 190 genera and 286 species, infected by 6 mistletoe species and 1 variety, belonging to 2 families 5 genera. There was significant difference (P<0.01) in infection density among different habitats, which was the highest in monoculture plantation, and the lowest in forest. The degree of host specificity (H') of seven mistletoe species ranged from 1.92 to 7.05. According to redundancy analysis, the DBH, bark water content and bark roughness of host species were significantly correlated with the distribution of mistletoe on host species, whereas wood density and bark pH had not significant correlation. In conclusion, mistletoe species showed great difference in host specificity in tropical plant community, which could partly explained by the preference on specific host functional traits of mistletoe species.

    参考文献
    [1] KUIJT J. The Biology of Parasitic Flowering Plants[M]. Berkeley:University of California Press, 1969.
    [2] NICKRENT D L. Santalales (including mistletoes)[M]//Encyclopedia of Life Sciences. Chichester:John Wiley & Sons, Ltd, 2011.
    [3] XIAO L Y, PU Z H. An investigation on the harm of Loranthaceae in Xishuangbanna, Yunnan[J]. Acta Bot Yunnan, 1988, 10(4):422-432. 肖来云, 普正和. 西双版纳桑寄生植物的危害调查[J]. 云南植物研究, 1988, 10(4):422-432.
    [4] CALDER M, BERNHARDT P. The Biology of Mistletoes[M]. New York:Academic Press, 1983.
    [5] REID N, STAFFORD-SMITH M, YAN Z, et al. Ecology and population biology of mistletoes[M]//LOWMAN M D, NADKARNI N M. Forest Canopies. New York:Academic Press, 1995.
    [6] RESTREPO C, SARGENT S, LEVEY D J et al. The role of vertebrates in the diversification of new world mistletoes[C]//LEVEY D J, SILVA W R, GALETTI M. Seed Dispersal and Frugivory:Ecology, Evolution and Conservation. Third International Symposium-Workshop on Frugivores and Seed Dispersal. São Pedro, Brazil:CABI, 2002. doi:10. 1079/9780851995250.0083.
    [7] GRENFELL M, BURNS K C. Sampling effects and host ranges in Australian mistletoes[J]. Biotropica, 2009, 41(6):656-658. doi:10. 1111/j.1744-7429.2009.00586.x.
    [8] THOMPSON J N. Variation in preference and specificity in monophagous and oligophagous swallowtail butterflies[J]. Evolution, 1988, 42(1):118-128. doi:10.1111/j.1558-5646.1988.tb04112.x.
    [9] OKUBAMICHAEL D Y, GRIFFITHS M E, WARD D. Host specificity in parasitic plants:Perspectives from mistletoes[J]. AoB Plants, 2016, 8:plw069. doi:10.1093/aobpla/plw069.
    [10] NORTON D A, DE LANGE P J. Host specificity in parasitic mistletoes (Loranthaceae) in New Zealand[J]. Funct Ecol, 1999, 13(4):552-559.
    [11] CARLO T A, AUKEMA J E. Female-directed dispersal and facilitation between a tropical mistletoe and a dioecious host[J]. Ecology, 2005, 86(12):3245-3251. doi:10.1890/05-0460.
    [12] AUKEMA J E. Vectors, viscin, and Viscaceae:Mistletoes as parasites, mutualists, and resources[J]. Front Ecol Environ, 2003, 1(4):212-219. doi:10.1890/1540-9295(2003)001[0212:VVAVMA]2.0.CO;2.
    [13] ARRUDA R, CARVALHO L N, DEL-CLARO K. Host specificity of a Brazilian mistletoe, Struthanthus aff. polyanthus (Loranthaceae), in Cerrado tropical savanna[J]. Flora, 2006, 201(2):127-134. doi:10. 1016/j.flora.2005.07.001.
    [14] SARGENT S. Seed fate in a tropical mistletoe:The importance of host twig size[J]. Funct Ecol, 1995, 9(2):197-204. doi:10.2307/2390565.
    [15] de LOPEZ D B, ORNELAS J F. Host compatibility of the cloud forest mistletoe Psittacanthus schiedeanus (Loranthaceae) in central Veracruz, Mexico[J]. Amer J Bot, 2002, 89(1):95-102. doi:10.3732/ajb.89.1.95.
    [16] DEAN W R J, MIDGLEY J J, STOCK W D. The distribution of mistletoes in South Africa:Patterns of species richness and host choice[J]. J Biogeogr, 1994, 21(5):503-510. doi:10.2307/2845654.
    [17] WATSON D M. Determinants of parasitic plant distribution:The role of host quality[J]. Botany, 2009, 87(1):16-21. doi:10.1139/B08-105.
    [18] FADINI F R. Non-overlap of hosts used by three congeneric and sympatric loranthaceous mistletoe species in an Amazonian savanna:Host generalization to extreme specialization[J]. Acta Bot Bras, 2011, 25(2):337-345. doi:10.1590/S0102-33062011000200010.
    [19] MESSIAS P A, de deus VIDAL JR J, KOCH I, et al. Host specificity and experimental assessment of the early establishment of the mistletoe Phoradendron crassifolium (Pohl ex DC.) Eichler (Santalaceae) in a fragment of Atlantic forest in southeast Brazil[J]. Acta Bot Bras, 2014, 28(4):577-582. doi:10.1590/0102-33062014abb3523.
    [20] LI K X, LIANG X J, QIN P, et al. Advances in mistletoes[J]. Guangxi For Sci, 2011, 40(4):311-314. doi:10.3969/j.issn.1006-1126.2011.04.017. 李开祥, 梁晓静, 覃平, 等. 桑寄生研究进展[J]. 广西林业科学, 2011, 40(4):311-314. doi:10.3969/j.issn.1006-1126.2011.04.017.
    [21] SUI Y, ZHANG L. A preliminary investigation on the spatial distribution patterns of mistletoes in polyculture and monoculture plantations in Xishuangbanna, Southwest China[J]. J Yunnan Univ (Nat Sci), 2014, 36(5):755-764. doi:10.7540/j.ynu.20140038. 随意, 张玲. 热带人工种植园桑寄生植物空间分布格局初查[J]. 云南大学学报(自然科学版), 2014, 36(5):755-764. doi:10.7540/j. ynu.20140038.
    [22] WANG X N, ZHANG L. Species diversity and distribution of mistletoes and hosts in four different habitats in Xishuangbanna, southwest China[J]. J Yunnan Univ (Nat Sci), 2017, 39(4):701-711. doi:10.7540/j.ynu. 20160542. 王煊妮, 张玲. 西双版纳4种生境下的桑寄生与寄主植物多样性及分布特点[J]. 云南大学学报(自然科学版), 2017, 39(4):701-711. doi:10.7540/j.ynu.20160542.
    [23] LIU P, WANG X A, GUO H, et al. Population distribution patterns and parasitic characteristics of Loranthus tanakae [J]. Chin J Ecol, 2014, 33(2):303-309. 刘鹏, 王孝安, 郭华, 等. 北桑寄生种群的分布格局及其寄生特性[J]. 生态学杂志, 2014, 33(2):303-309.
    [24] XIAO L Y, PU Z H. Loranthaceae in Xishuangbanna area:Diversity, distribution and habitat[J]. Trop Plant Res, 1982(25):49-57. 肖来云, 普正和. 西双版纳地区的桑寄生科植物(一):桑寄生科植物的种类、分布及环境[J]. 热带植物研究, 1982(25):49-57.
    [25] XIAO L Y, PU Z H. Loranthaceae in Xishuangbanna area:Harms to host trees[J]. Trop Plant Res, 1982(26):28-37. 肖来云, 普正和. 西双版纳地区的桑寄生科植物(二):桑寄生植物对树木的危害[J]. 热带植物研究, 1983(26):28-37.
    [26] XIAO L Y, PU Z H. Study on the relationship between the spread of Loranthaceae and birds in Xishuangbanna, Yunnan[J]. Acta Ecol Sin, 1994, 14(2): 128–135. 肖来云, 普正和. 云南西双版纳桑寄生植物传播与鸟的关系研究 [J]. 生态学报, 1994, 14(2): 128–135.
    [27] CAO J X, LIU W J, SHA L Q. Spatial heterogeneity of soil physical and chemical properties in Xishuangbanna Tropical Botanical Garden [J]. J Yunnan Univ (Nat Sci), 2009, 31(S1): 325–330. 曹俊琇, 刘文俊, 沙丽清. 西双版纳热带植物园园区土壤理化性质的空间异质性 [J]. 云南大学学报(自然科学版), 2009, 31(S1): 325–330.
    [28] CORNWELL W K, CORNELISSEN J H C, ALLISON S D, et al. Plant traits and wood fates across the globe: Rotted, burned, or consumed? [J]. Glob Change Biol, 2009, 15(10): 2431–2449. doi: 10.1111/j.1365-2486.2009.01916.x.
    [29] MISTRY J. Corticolous lichens as potential bioindicators of fire history: A study in the Cerrado of the Distrito Federal, central Brazil [J]. J Biogeogr, 1998, 25(3): 409–441. doi: 10.1046/j.1365-2699.1998.2530409.x.
    [30] OSUNKOYA O O, SHENG T K, MAHMUD N A, et al. Variation in wood density, wood water content, stem growth and mortality among twenty-seven tree species in a tropical rainforest on Borneo Island [J]. Aust Ecol, 2007, 32(2): 191–201. doi: 10.1111/j.1442-9993.2007.01678.x.
    [31] KRICKE R. Measuring bark pH [M]// NIMIS P L, SCHEIDEGGER C, WOLSELEY P A. Monitoring with Lichens: Monitoring Lichens. Dordrecht: Springer, 2002. doi: 10.1007/978-94-010-0423-7_30.
    [32] OKSANEN J, BLANCHET F G, KINDT R, et al. Vegan: Community ecology package, ordination methods, diversity analysis and other functions for community and vegetation ecologists [CP/OL]. 2006. https://cran.r-project.org/web/packages/vegan/index.html.
    [33] Team R Development Core. R: A language and environment for statistical computing [CP]. Vienna: R Foundation for Statistical Computing, 2016.
    [34] KELLY D, LADLEY J J, ROBERTSON A W, et al. Limited forest fragmentation improves reproduction in the declining New Zealand mistletoe Peraxilla tetrapetala (Loranthaceae) [M]// YOUNG A G, CLARKE G M. Genetics, Demography and Viability of Fragmented Populations. Cambridge: Cambridge University Press, 2000.
    [35] RIST L, SHAANKER R U, GHAZOUL J. The spatial distribution of mistletoe in a southern indian tropical forest at multiple scales [J]. Biotropica, 2011, 43(1): 50–57. doi: 10.1111/j.1744-7429.2010.00643.x.
    [36] BARLOW B A, WIENS D. Host-parasite resemblance in Australian mistletoes: The case for cryptic mimicry [J]. Evolution, 1977, 31(1): 69–84. doi: 10.1111/j.1558-5646.1977.tb00983.x.
    [37] NORTON D A, CARPENTER M A. Mistletoes as parasites: Host specificity and speciation [J]. Trends Ecol Evol, 1998, 13(3): 101–105. doi: 10.1016/S0169-5347(97)01243-3.
    [38] KAVANAGH P H, BURNS K C. Mistletoe macroecology: Spatial patterns in species diversity and host use across Australia [J]. Biol J Linn Soc, 2012, 106(3): 459–468. doi: 10.1111/j.1095-8312.2012.01890.x.
    [39] LIRA J, CAIRES C S, FADINI R F. Reaching the canopy on the ground:Incidence of infection and host-use by mistletoes (Loranthaceae and Viscaceae) on trees felled for timber in Amazonian rainforests[J]. Plant Ecol, 2017, 218(3):251-263. doi:10.1007/s 11258-016-0683-9.
    [40] LUO Y H, SUI Y, GAN J M, et al. Host compatibility interacts with seed dispersal to determine small-scale distribution of a mistletoe in Xishuangbanna, southwest China[J]. J Plant Ecol, 2016, 9(1):77-86.
    [41] GENINI J, CÔRTES M C, GUIMARÃES JR P R, et al. Mistletoes play different roles in a modular host-parasite network[J]. Biotropica, 2012, 44(2):171-178. doi:10.1111/j.1744-7429.2011.00794.x.
    [42] EHLERINGER J R, SCHULZE E D, ZIEGLER H, et al. Xylemtapping mistletoes:Water or nutrient parasites?[J]. Science, 1985, 227(4693):1479-1481. doi:10.1126/science.227.4693.1479.
    [43] EHLERINGER J R, ULLMANN I, LANGE O L, et al. Mistletoes:A hypothesis concerning morphological and chemical avoidance of herbiyory[J]. Oecologia, 1986, 70(2):234-237. doi:10.1007/B00379245.
    [44] SEEL W E, COOPER R E, PRESS M C. Growth, gas exchange and water use efficiency of the facultative hemiparasite Rhinanthus minor associated with hosts differing in foliar nitrogen concentration[J]. Physiol Plant, 1993, 89(1):64-70. doi:10.1111/j.1399-3054.1993.tb01787.x.
    [45] SHAW D C, CHEN J Q, FREEMAN E A, et al. Spatial and population characteristics of dwarf mistletoe infected trees in an old-growth Douglas-fir western hemlock forest [J]. Can J Forest Res, 2005, 35(4): 990–1001. doi: 10.1139/x05-022.
    [46] de BUEN L L, ORNELAS J F, GARCI?A-FRANCO J G. Mistletoe infection of trees located at fragmented forest edges in the cloud forests of Central Veracruz, Mexico [J]. For Ecol Manage, 2002, 164(1/2/3): 293–302. doi: 10.1016/S0378-1127(01)00624-7.
    [47] OVERTON J M. Dispersal and infection in mistletoe metapopulations[J]. J Ecol, 1994, 82(4):711-723. doi:10.2307/2261437.
    [48] OKUBAMICHAEL D Y. Host specificity of the hemiparasitic mistletoe, Agelanthus natalitius[D]. Pietermaritzburg:University of KwaZulu-Natal, 2009.
    [49] LAMONT B. Host range and germination requirements of some South African mistletoes[J]. S Afr J Sci, 1982, 78:41-42.
    [50] DEAN W R J, MIDGLEY J J, STOCK W D. The distribution of mistletoes in South Africa:Patterns of species richness and host choice[J]. J Biogeogr, 1994, 21(5):503-510. doi:10.2307/2845654.
    [51] YAN Z. Resistance to haustorial development of two mistletoes, Amyema preissii (Miq.) Tieghem and Lysiana exocarpi (Behr.) Tieghem ssp. exocarpi (Loranthaceae), on host and nonhost species[J]. Int J Plant Sci, 1993, 154(3):386-394. doi:10.1086/297120.
    [52] RIO C M D, HOURDEQUIN M, SILVA A, et al. The influence of cactus size and previous infection on bird deposition of mistletoe seeds[J]. Aust Ecol, 1995, 20(4):571-576. doi:10.1111/j.1442-9993.1995.tb00577.x.
    [53] MEDEL R. Assessment of parasite-mediated selection in a host- parasite system in plants[J]. Ecology, 2000, 81(6):1554-1564. doi:10. 1890/0012-9658(2000)081[1554:AOPMSI]2.0.CO;2.
    [54] RUNYON J B, MESCHER M C, DE MORAES C M. Volatile chemical cues guide host location and host selection by parasitic plants[J]. Science, 2006, 313(5795):1964-1967. doi:10.1126/science.1131371.
    [55] RÖDL T, WARD D. Host recognition in a desert mistletoe:Early stages of development are influenced by substrate and host origin[J]. Funct Ecol, 2002, 16(1):128-134. doi:10.1046/j.0269-8463.2001. 00592.x.
    [56] OKUBAMICHAEL D Y, GRIFFITHS M E, WARD D. Host specificity, nutrient and water dynamics of the mistletoe Viscum rotundifolium and its potential host species in the Kalahari of South Africa[J]. J Arid Environ, 2011, 75(10):898-902. doi:10.1016/j.jaridenv.2011.04.026.
    [57] JAMISON D S, YODER J I. Heritable variation in quinone-induced haustorium development in the parasitic plant Triphysaria[J]. Plant Physiol, 2001, 125(4):1870-1879.s Australia[J]. Biol J Linn Soc, 2012, 106(3):459-468. doi:10.1111/j.1095-8312.2012.01890.x.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李远杰,张玲.寄主植物的功能性状对桑寄生寄主专一性的影响初探[J].热带亚热带植物学报,2019,27(2):187~195

复制
分享
文章指标
  • 点击次数:941
  • 下载次数: 893
  • HTML阅读次数: 400
  • 引用次数: 0
历史
  • 收稿日期:2018-04-27
  • 最后修改日期:2018-06-01
  • 在线发布日期: 2019-03-26
文章二维码