鹅掌楸LcUGE基因的克隆和组织表达分析
作者:
基金项目:

国家自然科学基金项目(31770718,31470660);江苏省高校优势学科建设工程项目(PAPD)资助


Cloning and Expression of LcUGE in Liriodendron chinense
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了解鹅掌楸(Liriodendron chinense)的UGE基因功能,采用RACE和EPIC-PCR技术克隆到2个UGE基因,命名为LcUGE1LcUGE2。结果表明,LcUGE1基因的cDNA全长为1 531 bp,包含1 050 bp的开放阅读框,编码349个氨基酸,gDNA长度为11 920 bp;LcUGE2基因的cDNA长度为1 378 bp,包含1 056 bp的开放阅读框,编码351个氨基酸,gDNA长度为6 544 bp。LcUGE1LcUGE2基因均含有9个外显子和8个内含子,且外显子长度和内含子剪切位点序列几乎一致,但内含子片段长度存在显著差异。编码的LcUGE1和LcUGE2蛋白高度保守,保守性达到82%。LcUGE1基因在雄蕊中表达量最高,而LcUGE2基因则在花萼中表达量最高。这表明LcUGEs基因可能参与鹅掌楸的生殖发育过程。

    Abstract:

    In order to understand the function of UGE in Liriodendron chinense, two genes, named LcUGE1 and LcUGE2, were obtained by RACE and EPIC-PCR. The result showed that the full-length cDNA of LcUGE1 and LcUGE2 were 1 531 and 1 378 bp with 1 050 and 1 056 bp open reading frame (ORF), and encoding 349 and 351 amino acids, respectively. Their genome DNA length were 11 920 and 6 544 bp, respectively. Both of LcUGE1 and LcUGE2 genes contained 9 exons and 8 introns. Though the exon length and intron splicing site sequence were almost similar, thier intron fragment length were different. The nucleic acid sequences of LcUGE1 and LcUGE2 were highly conserved up to 82% similarity. The expression of LcUGE1 and LcUGE2 were the highest in stamens and calyx, respectively. Therefore, the LcUGE genes could be involved in reproductive development of L. chinense.

    参考文献
    [1] REITER W D, VANZIN G F. Molecular genetics of nucleotide sugar interconversion pathways in plants[J]. Plant Mol Biol, 2001, 47(1/2):95-113. doi:10.1023/A:1010671129803.
    [2] Ross K L, Davis C N, Fridovich-Keil J L. Differential roles of the Leloir pathway enzymes and metabolites in defining galactose sensitivity in yeast[J]. Mol Genet Met, 2004, 83(1/2):103-116. doi:10.1016/j.ymgme.2004.07.005.
    [3] HOLDEN H M, RAYMENT I, THODEN J B. Structure and function of enzymes of the Leloir pathway for galactose metabolism[J]. J Biol Chem, 2003, 278(45):43885-43888. doi:10.1074/jbc.R300025200.
    [4] LIU H L, DAI X Y, XU Y Y, et al. Over-expression of OsUGE-1 altered raffinose level and tolerance to abiotic stress but not morphology in Arabidopsis [J]. J Plant Physiol, 2007, 164(10):1384-1390. doi:10. 1016/j.jplph.2007.03.005.
    [5] KLECZKOWSKI L A, KUNZ S, WILCZYNSKA M. Mechanisms of UDP-glucose synthesis in plants[J]. Crit Rev Plant Sci, 2010, 29(4):191-203. doi:10.1080/07352689.2010.483578.
    [6] SEIFERT G J, BARBER C, WELLS B, et al. Growth regulators and the control of nucleotide sugar flux[J]. Plant Cell, 2004, 16(3):723-730. doi:10.1105/tpc.019661.
    [7] BARBER C, RÖSTI J, RAWAT A, et al. Distinct properties of the five UDP-d-glucose/UDP-d-galactose 4-epimerase isoforms of Arabidopsis thaliana[J]. J Biol Chem, 2006, 281(25):17276-17285. doi:10.1074/jbc.M512727200.
    [8] ZHANG Q S, HRMOVA M, SHIRLEY N J, et al. Gene expression patterns and catalytic properties of UDP-d-glucose 4-epimerases from barley (Hordeum vulgare L.)[J]. Biochem J, 2006, 394(Pt 1):115-124. doi:10.1042/BJ20051329.
    [9] KIM S K, KIM D H, KIM B G, et al. Cloning and characterization of the UDP glucose/galactose epimerases of Oryza sativa[J]. J Korean Soc Appl Biol Chem, 2009, 52(4):315-320. doi:10.3839/jksabc.2009.056.
    [10] SUN H Y, LI L C, LOU Y F, et al. Cloning and preliminary functional analysis of PeUGE gene from moso bamboo (Phyllostachys edulis)[J]. DNA Cell Biol, 2016, 35(11):706-714. doi:10.1089/dna.2016.3389.
    [11] RÖSTI J, BARTON C J, ALBRECHT S, et al. UDP-glucose 4-epimerase isoforms UGE2 and UGE4 cooperate in providing UDP-galactose for cell wall biosynthesis and growth of Arabidopsis thaliana[J]. Plant Cell, 2007, 19(5):1565-1579. doi:10.1105/tpc.106.049619.
    [12] SOLDO B, SCOTTI C, KARAMATA D, et al. The Bacillus subtilis Gne (GneA, GalE) protein can catalyse UDP-glucose as well as UDP-N-acetylglucosamine 4-epimerisation[J]. Gene, 2003, 319:65-69. doi:10.1016/S0378-1119(03)00793-5.
    [13] GUEVARA D R, EL-KEREAMY A, YAISH M W, et al. Functional characterization of the rice UDP-glucose 4-epimerase 1, OsUGE1:A potential role in cell wall carbohydrate partitioning during limiting nitrogen conditions[J]. PLoS One, 2014, 9(5):e96158. doi:10.1371/journal.pone.0096158.
    [14] WANG Z R. Utilization and Species Hybridization in Liriodendron[M]. Beijing:China Forestry Publishing House, 2005:15-27. 王章荣. 鹅掌楸属树种杂交育种与利用[M]. 北京:中国林业出版社, 2005:15-27.
    [15] LI H G, CHEN L, LIANG C Y, et al. A case study on provenance testing of tulip tree (Liriodendron spp.)[J]. China For Sci Technol, 2005, 19(5):13-16. doi:10.3969/j.issn.1000-8101.2005.05.005. 李火根, 陈龙, 梁呈元, 等. 鹅掌楸属树种种源试验研究[J] 林业科技开发, 2005, 19(5):13-16. doi:10.3969/j.issn.1000-8101.2005.05. 005.
    [16] CHENG Y L, ZHONG W P, HAO Z Y, et al. Cloning and expression analysis of CCD1 gene in Liriodendron tulipifera[J]. Mol Plant Breed, 2017, 15(6):2139-2146. doi:10.13271/j.mpb.015.002139. 成彦丽, 仲维平, 郝自远, 等. 北美鹅掌楸CCD1基因的克隆与表达分析[J]. 分子植物育种, 2017, 15(6):2139-2146. doi:10.13271/j. mpb.015.002139.
    [17] TAMURA K, STECHER G, PETERSON D, et al. MEGA6:Molecular evolutionary genetics analysis, Version 6.0[J]. Mol Biol Evol, 2013, 30(12):2725-2729. doi:10.1093/molbev/mst197.
    [18] BERREBI P, RETIF X, FANG F, et al. Population structure and syste-matics of Opsariichthys bidens (Osteichthyes:Cyprinidae) in south-east China using a new nuclear marker:The introns (EPIC-PCR)[J]. Biol J Linn Soc Lond, 2006, 87(1):155-166. doi:10.1111/j.1095-8312. 2006.00563.x.
    [19] TAY W T, BEHERE G T, HECKEL D G, et al. Exon-primed intron-crossing (EPIC) PCR markers of Helicoverpa armigera (Lepidoptera:Noctuidae)[J]. Bull Entomol Res, 2008, 98(5):509-518. doi:10.1017/S000748530800583X.
    [20] LESSA E P. Rapid surveying of DNA sequence variation in natural populations[J]. Mol Biol Evol, 1992, 9(2):323-330. doi:10.1093/oxfordjournals.molbev.a040723.
    [21] PALUMBI S R, BAKER C S. Contrasting population structure from nuclear intron sequences and mtDNA of humpback whales[J]. Mol Biol Evol, 1994, 11(3):426-435. doi:10.1093/oxfordjournals.molbev. a040115.
    [22] SLADE R W, MORITZ C, HEIDEMAN A, et al. Rapid assessment of single-copy nuclear DNA variation in diverse species[J]. Mol Ecol, 1993, 2(6):359-373. doi:10.1111/j.1365-294X.1993.tb00029.x.
    [23] LARDEUX F, ALIAGA C, TEJERINA R, et al. Development of exon-primed intron-crossing (EPIC) PCR primers for the malaria vector Anopheles pseudopunctipennis (Diptera:Culicidae)[J]. C R Biol, 2012, 335(6):398-405. doi:10.1016/j.crvi.2012.05.002.
    [24] YANG Y, LI H G. Cloning of NAC gene from Liriodendron tulipifera and its expression analysis[J]. J Plant Res Environ, 2015, 24(3):1-9. doi:10.3969/j.issn.1674-7895.2015.03.01. 杨颖, 李火根. 北美鹅掌楸NAC基因的克隆与表达分析[J]. 植物资源与环境学报, 2015, 24(3):1-9. doi:10.3969/j.issn.1674-7895. 2015.03.01.
    [25] BLIGNY R, GARDESTROM P, ROBY C, et al. 31P NMR studies of spinach leaves and their chloroplasts[J]. J Biol Chem, 1990, 265(3):1319-1326.
    [26] MOORE P J, SWORDS K M, LYNCH M A, et al. Spatial organization of the assembly pathways of glycoproteins and complex polysaccha-rides in the golgi apparatus of plants[J]. J Cell Biol, 1991, 112(4):589-602. doi:10.1083/jcb.112.4.589.
    [27] NORAMBUENA L, MARCHANT L, BERNINSONE P, et al. Transport of UDP-galactose in plants:Identification and functional characterization of AtUTr1, an Arabidopsis thaliana UDP-galactos/UDP-glucose transporter[J]. J Biol Chem, 2002, 277(36):32923-32929. doi:10. 1074/jbc.M204081200.
    [28] JUNG Y J, KYOUNG J H, NOU I S, et al. Molecular characterization of the UDP-glucose 4-epimerase (BrUGE) gene family in response to biotic and abiotic stress in Chinese cabbage (Brassica rapa)[J]. Plant Biotechnol Rep, 2015, 9(6):339-350. doi:10.1007/s11816-015-0370-7.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李嘉昱,郝自远,申宇芳,李火根.鹅掌楸LcUGE基因的克隆和组织表达分析[J].热带亚热带植物学报,2018,26(6):561~570

复制
分享
文章指标
  • 点击次数:1191
  • 下载次数: 955
  • HTML阅读次数: 356
  • 引用次数: 0
历史
  • 收稿日期:2018-01-17
  • 最后修改日期:2018-03-06
  • 在线发布日期: 2018-11-21
文章二维码