荔枝花蜜分泌规律及可溶性糖组分和含量的分析
作者:
基金项目:

国家现代农业产业技术体系项目(CARS-33);广东省自然科学基金项目(2016A030310458)资助


Analysis of Secretion Pattern and Soluble Sugar Composition and Contents in Litchi Nectar
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [34]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了解荔枝(Litchi chinensis)花蜜的分泌规律和主要组分,对‘糯米糍’、‘桂味’和‘怀枝’3个主栽品种雄花和雌花的花蜜分泌模式进行研究,并测定花蜜中可溶性糖的组分和含量。结果表明,采样期间果园阴天和晴天气温差异不明显,但阴天的相对空气湿度显著高于晴天。总体上阴天的荔枝花蜜分泌量高于晴天,雌花的花蜜分泌量高于雄花,‘桂味’和‘糯米糍’的花蜜分泌量均高于‘怀枝’。晴天花蜜中的可溶性固形物含量高于阴天的,且在雌花中表现尤为明显。‘怀枝’花蜜中的可溶性固形物含量最高,可达37.7%,‘桂味’其次,‘糯米糍’最少(17.7%)。利用高效液相色谱检测,荔枝花蜜中主要可溶性糖组分为葡萄糖、果糖和蔗糖,以葡萄糖含量最高。晴天时‘怀枝’雌花花蜜中可溶性糖含量达450.36 μg mL-1,显著高于另外两个品种。这为荔枝栽培和花蜜生产提供科学依据。

    Abstract:

    In order to understand the secretion rule and components of litchi (Litchi chinensis) nectar, the nectar secretion pattern of male and female flowers in ‘Nuomici’ (‘NMC’), ‘Guiwei’ (‘GW’) and ‘Huaizhi’ (‘HZ’) were studied in cloudy and sunny days. The results showed that there was no significant difference in air temperature between sunny and cloudy days, but the relative air humidity of cloudy day was significantly higher than that of sunny day. The nectar amount in cloudy day was more than that in sunny day, and female flowers secreted nectar more than male flowers, as well as ‘NMC’ and ‘GW’ more than ‘HZ’. The soluble solid content in nectar at sunny day was higher than that in cloudy day, in especial of female flowers. The soluble solid content in nectar was the highest in ‘HZ’, reached up to 37.7%, followed by ‘GW’, and ‘NMC’ was the lowest for 17.7%. The soluble sugars were mainly composed of glucose, fructose and sucrose by HPLC, and the content of glucose was the highest. The soluble sugar content of in ‘HZ’ nectar of female flowers in sunny day was 450.36 μg mL-1, which was significantly more than that of other two cultivars. These would provide scientific basis for cultivation and nectar production of litchi.

    参考文献
    [1] CHEN H B, SU Z X, ZHANG R, et al. Progresses in research of litchi floral differentiation[J]. Sci Agric Sin, 2014, 47(9):1774-1783. doi:10.3864/j.issn.0578-1752.2014.09.012. 陈厚彬, 苏钻贤, 张荣, 等. 荔枝花芽分化研究进展[J]. 中国农业科学, 2014, 47(9):1774-1783. doi:10.3864/j.issn.0578-1752.2014.09. 012.
    [2] NICOLSON S W. Amino acid concentrations in the nectars of southern African bird-pollinated flowers, especially Aloe and Erythrina[J]. J Chem Ecol, 2007, 33(9):1707-1720. doi:10.1007/s10886-007-9342-x.
    [3] QING Z, SU R, DONG K, et al. Research progress on nectar compo-sitions and their ecological functions[J]. Chin J Ecol, 2014, 33(3):825-836. doi:10.13292/j.1000-4890.2014.0078. 卿卓, 苏睿, 董坤, 等. 花蜜化学成分及其生态功能研究进展[J]. 生态学杂志, 2014, 33(3):825-836. doi:10.13292/j.1000-4890.2014. 0078.
    [4] CHEN Y C, LIN J T, LIU S C, et al. Composition of flavonoids and phenolic acids in lychee (Litchi chinensis Sonn.) flower extracts and their antioxidant capacities estimated with human LDL, erythrocyte, and blood models[J]. J Food Sci, 2011, 76(5):C724-C728. doi:10. 1111/j.1750-3841.2011.02164.x.
    [5] KENJERIĆ D, MANDIĆ M L, PRIMORAC L, et al. Flavonoid profile of Robinia honeys produced in Croatia[J]. Food Chem, 2007, 102(3):683-690. doi:10.1016/j.foodchem.2006.05.055.
    [6] PYRZYNSKA K, BIESAGA M. Analysis of phenolic acids and flavor-noids in honey[J]. TrAC Trends Anal Chem, 2009, 28(7):893-902. doi:10.1016/j.trac.2009.03.015.
    [7] WESTON R J, BROCKLEBANK L K, LU Y R. Identification and quantitative levels of antibacterial components of some New Zealand honeys[J]. Food Chem, 2000, 70(4):427-435. doi:10.1016/S0308-8146(00)00127-8.
    [8] JERKOVIĆ I, TUBEROSO C I G, MARIJANOVIĆ Z, et al. Head-space, volatile and semi-volatile patterns of Paliurus spina-christi unifloral honey as markers of botanical origin[J]. Food Chem, 2009, 112(1):239-245. doi:10.1016/j.foodchem.2008.05.080.
    [9] SU Y Z, XIE L Q, WANG Q, et al. SPME-GC-MS analysis of volatile compounds from four xinjiang monofloral honey[J]. Food Sci, 2010, 31(24):293-299. doi:10.7506/spkx1002-6630-201024063. 粟有志, 谢丽琼, 王强, 等. 4种新疆单花蜜挥发性成分的SPME-GC-MS分析[J]. 食品科学, 2010, 31(24):293-299. doi:10.7506/spkx1002-6630-201024063.
    [10] PEI G P, SHI B L, ZHAO L, et al. The analysis research of three nectar source honey aroma ingredients differentiation information[J]. Food Sci Technol, 2014, 39(2):68-73. doi:10.13684/j.cnki.spkj.2014.02.016. 裴高璞, 史波林, 赵镭, 等. 3种蜜源蜂蜜香气成分差异化信息分析研究[J]. 食品科技, 2014, 39(2):68-73. doi:10.13684/j.cnki.spkj. 2014.02.016.
    [11] ZHAO L F, XU Y Y, DONG R, et al. Research progress of chemical components in monofloral honey[J]. Food Sci, 2013, 34(7):330-334. doi:10.7506/spkx1002-6630-201307070. 赵立夫, 徐云友, 董蕊, 等. 单花蜜的化学成分研究进展[J]. 食品科学, 2013, 34(7):330-334. doi:10.7506/spkx1002-6630-201307070.
    [12] CARTER C, THORNBURG R W. Tobacco nectarin:I. Purification and characterization as a germin-like, manganese superoxide dismutase implicated in the defense of floral reproductive tissues[J]. J Biol Chem, 2000, 275(47):36726-36733. doi:10.1074/jbc.M006461200.
    [13] JOHNSON S D, NICOLSON S W. Evolutionary associations between nectar properties and specificity in bird pollination systems[J]. Biol Lett, 2008, 4(1):49-52. doi:10.1098/rsbl.2007.0496.
    [14] GUFFA B, NEDIĆ N M, DABIĆ ZAGORAC D Ć, et al. Characte-rization of sugar and polyphenolic diversity in floral nectar of different ‘Oblacinska’ sour cherry clones[J]. Chem Biodiv, 2017, 14(9):e1700061. doi:10.1002/cbdv.201700061.
    [15] HEIL M. Nectar:Generation, regulation and ecological functions[J]. Trends Plant Sci, 2011, 16(4):191-200. doi:10.1016/j.tplants.2011.01. 003.
    [16] PACINI E, NEPI M, VESPRINI J L. Nectar biodiversity:A short review[J]. Plant Syst Evol, 2003, 238(1/2/3/4):7-21. doi:10.1007/s 00606-002-0277-y.
    [17] ROY R, SCHMITT A J, THOMAS J B, et al. Review:Nectar biology:From molecules to ecosystems[J]. Plant Sci, 2017, 262:148-164. doi:10.1016/j.plantsci.2017.04.012.
    [18] SIMOVA S, ATANASSOV A, SHISHINIOVA M, et al. A rapid diffe-rentiation between oak honeydew honey and nectar and other honey-dew honeys by NMR spectroscopy[J]. Food Chem, 2012, 134(3):1706-1710. doi:10.1016/j.foodchem.2012.03.071.
    [19] LIN I W, SOSSO D, CHEN L Q, et al. Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9[J]. Nature, 2014, 508(7497):546-549. doi:10.1038/nature13082.
    [20] NEPI M, CIAMPOLINI F, PACINI E. Development and ultrastructure of Cucurbita pepo nectaries of male flowers[J]. Ann Bot, 1996, 78(1):95-104. doi:10.1006/anbo.1996.0100.
    [21] NING X P, TANG T X, WU H. Relationship between the morpho-logical structure of floral nectaries and the formation, transport, and secretion of nectar in lychee[J]. Trees, 2017, 31(1):1-14. doi:10. 1007/s00468-016-1504-4.
    [22] PENG Y B, LI Y Q, HAO Y J, et al. Nectar production and trans-portation in the nectaries of the female Cucumis sativus L. flower during anthesis[J]. Protoplasma, 2004, 224(1/2):71-78. doi:10.1007/s00709-004-0051-9.
    [23] WIST T J, DAVIS A R. Floral nectar production and nectary anatomy and ultrastructure of Echinacea purpurea (Asteraceae)[J]. Ann Bot, 2006, 97(2):177-193. doi:10.1093/aob/mcj027.
    [24] AGOSTINI K, SAZIMA M, GALETTO L. Nectar production dynamics and sugar composition in two Mucuna species (Leguminosae, Faboideae) with different specialized pollinators[J]. Naturwissenschaften, 2011, 98(11):933-942. doi:10.1007/s00114-011-0844-6.
    [25] NI C Z, ZHU B H, WANG N N, et al. Simple column-switching ion chromatography method for determining eight monosaccharides and oligosaccharides in honeydew and nectar[J]. Food Chem, 2016, 194:555-560. doi:10.1016/j.foodchem.2015.08.049.
    [26] YANG Z Y, WANG T D, WANG H C, et al. Patterns of enzyme activities and gene expressions in sucrose metabolism in relation to sugar accumulation and composition in the aril of Litchi chinensis Sonn.[J]. J Plant Physiol, 2013, 170(8):731-740. doi:10.1016/j.jplph. 2012.12.021.
    [27] LIU L D, LI W, ZHU N, et al. The relations among the nectar secretive rhythms, nectar compositions and diversities of floral visitors for both Eleutherococcus senticosus and E. sessiliflorus[J]. Acta Ecol Sin, 2002, 22(6):847-853. doi:10.3321/j.issn:1000-0933.2002.06.008. 刘林德, 李玮, 祝宁, 等. 刺五加、短梗五加的花蜜分泌节律、花蜜成分及访花者多样性的比较研究[J]. 生态学报, 2002, 22(6):847-853. doi:10.3321/j.issn:1000-0933.2002.06.008.
    [28] LI J H, MIAO X Q, YOU M S. Study of secretion of litchi nectar[J]. J Bee, 2000(2):6-8. 李江红, 缪晓青, 尤民生. 荔枝泌蜜的研究[J]. 蜜蜂杂志, 2000(2):6-8.
    [29] WYATT R, BROYLES S B, DERDA G S. Environmental influences on nectar production in milkweeds (Asclepias syriaca and A. exaltata)[J]. Amer J Bot, 1992, 79(6):636-642. doi:10.1002/j.1537-2197.1992. tb14605.x.
    [30] SUN Y, ZHUO L H. The nectar secretion rhythms and influencing factors of pollination efficiency of Agapanthus africanus ssp. orientalis ‘Big Blue’[J]. Acta Agric Shanghai, 2009, 25(2):36-40. doi:10.3969/j. issn.1000-3924.2009.02.008. 孙颖, 卓丽环. 百子莲的花蜜分泌节律及传粉效率影响因素的研究[J]. 上海农业学报, 2009, 25(2):36-40. doi:10.3969/j.issn.1000-3924. 2009.02.008.
    [31] WANG Y, QUAN Q M, LI Y X. Effects of flowering period on nectar secretion and fruit set of Epimedium wushanense (Berberidaceae)[J]. Plant Divers Resour, 2012, 34(5):471-477. doi:10.3724/SP.J.1143. 2012.12024. 王怡, 权秋梅, 黎云祥. 开花时间对巫山淫羊藿花蜜分泌和结实的影响[J]. 植物分类与资源学报, 2012, 34(5):471-477. doi:10.3724/SP.J.1143.2012.12024.
    [32] BARLOW S E, WRIGHT G A, MA C, et al. Distasteful nectar deters floral robbery[J]. Curr Biol, 2017, 27(16):2552-2558. doi:10.1016/j.cub.2017.07.012.
    [33] ANTOŃ S, KOMOŃ-JANCZARA E, DENISOW B. Floral nectary, nectar production dynamics and chemical composition in five nocturnal Oenothera species (Onagraceae) in relation to floral visitors[J]. Planta, 2017, 246(6):1051-1067. doi:10.1007/s00425-017-2748-y.
    [34] SOLS A, CADENAS E, ALVARADO F. Enzymatic basis of mannose toxicity in honey bees[J]. Science, 1960, 131(3396):297-298. doi:10. 1126/science.131.3396.297.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李婧,肖秋生,申济源,陈厚彬.荔枝花蜜分泌规律及可溶性糖组分和含量的分析[J].热带亚热带植物学报,2018,26(5):490~496

复制
分享
文章指标
  • 点击次数:1159
  • 下载次数: 844
  • HTML阅读次数: 390
  • 引用次数: 0
历史
  • 收稿日期:2017-12-29
  • 最后修改日期:2018-05-07
  • 在线发布日期: 2018-09-18
文章二维码