巴西橡胶树栽培种质基因组C值测定和变异分析
作者:
基金项目:

云南省现代农业天然橡胶产业技术体系建设项目;云南省技术创新人才培养对象项目;云南省热带作物科技创新体系建设项目(RF2018/RF2017)资助


Genome C Value and Variation Analysis of Cultivated Rubber Tree (Hevea brasiliensis) Germplasms by Flow Cytometry
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了解巴西橡胶树(Hevea brasiliensis)栽培种质的变异情况,以53份在云南植胶区综合性状表现较好的巴西橡胶树栽培种质为材料,采用流式细胞术测定了基因组C值,并进行了变异分析。结果表明,浅绿色嫩叶是巴西橡胶树流式细胞术测定的最适样品。53份巴西橡胶树栽培种质的细胞核DNA含量和基因组C值存在一定差异,基因组的平均C值是1.531 696×109bp,最小的是CRTG-272种质(1.465 908×109bp),最大的是CRTG-83种质(1.600 381×109bp),变异系数较小(CV=0.035 5)。53份巴西橡胶树栽培种质中有47份为二倍体,6份为三倍体。在已测定基因组大小的40种大戟科(Euphorbiaceae)植物中,基因组大小变异较大(CV=1.248 6),与“C值悖论”观点相一致。因此,应用流式细胞术能快速、准确地测定巴西橡胶树细胞核DNA含量、基因组C值和染色体倍性。

    Abstract:

    In order to understand the variation of cultivated germplasm of Hevea brasiliensis, the genomic C value of 53 cultivated germplasms with high quality characters in Yunnan rubber planting areas were measured by flow cytometry, and their variations were analyzed. The results showed that light green young leaves of H. brasiliensis were suitable samples for flow cytometry. There were differences in nuclear DNA content and genomic C value among 53 cultivated germplasms. The average genomic C value was 1.531 696×109bp, the smallest was CRTG-272 (1.465 908×109bp), the largest was CRTG-83 (1.600 381×109bp), and the variation coefficient (CV) was small (0.035 5). Among 53 cultivated germplasms of H. brasiliensis, forty-seven were diploid and 6 were triploid. The genome sizes had big CV up to 1.248 6 among 40 species of Euphorbiaceae, which is consistent with the view of the C value paradox. Therefore, flow cytometry can achieve rapid and accurate determination of the nuclear DNA content, genomic C value, and chromosome ploidy of H. brasiliensis.

    参考文献
    [1] Zou Z, Liu J T, Yang L F, et al. Survey of the rubber tree genome reveals a high number of cysteine protease-encoding genes homo-logous to Arabidopsis SAG12[J]. PLoS One, 2017, 12(2):e0171725. doi:10.1371/journal.pone.0171725.
    [2] ZOU Z, GONG J, AN F, et al. Genome-wide identification of rubber tree (Hevea brasiliensis Muell. Arg.) aquaporin genes and their response to ethephon stimulation in the laticifer, a rubber-producing tissue[J/OL]. BMC Genom, 2015, 16:1001. doi:10.1186/s12864-015-2152-6.
    [3] LERTPANYASAMPATHA M, GAO L, KONGSAWADWORAKUL P, et al. Genome-wide analysis of microRNAs in rubber tree (Hevea brasiliensis L.) using high-throughput sequencing[J]. Planta, 2012, 236(2):437-445. doi:10.1007/s00425-012-1622-1.
    [4] LIU J P, XIA Z Q, TIAN X Y, et al. Transcriptome sequencing and analysis of rubber tree (Hevea brasiliensis Muell.) to discover putative genes associated with tapping panel dryness (TPD)[J/OL]. BMC Genom, 2015, 16:398. doi:10.1186/s12864-015-1562-9.
    [5] RAHMAN A Y A, USHARRAJ A O, MISRA B B, et al. Draft genome sequence of the rubber tree Hevea brasiliensis[J/OL]. BMC Genom, 2013, 14:75. doi:10.1186/1471-2164-14-75.
    [6] TANG C R, YANG M, FANG Y J, et al. The rubber tree genome reveals new insights into rubber production and species adaptation[J/OL]. Nat Plant, 2016, 2:16073. doi:10.1038/nplants.2016.73.
    [7] LAU N S, MAKITA Y, KAWASHIMA M, et al. The rubber tree genome shows expansion of gene family associated with rubber biosynthesis[J/OL]. Sci Rep, 2016, 6:28594. doi:10.1038/srep28594.
    [8] POOTAKHAM W, SONTHIROD C, NAKTANG C, et al. De novo hybrid assembly of the rubber tree genome reveals evidence of paleote-traploidy in Hevea species[J/OL]. Sci Rep, 2017, 7:41457. doi:10. 1038/srep41457.
    [9] TANGPHATSORNRUANG S, UTHAIPAISANWONG P, SANGSRA-KRU D, et al. Characterization of the complete chloroplast genome of Hevea brasiliensis reveals genome rearrangement, RNA editing sites and phylogenetic relationships[J]. Gene, 2011, 475(2):104-112. doi:10.1016/j.gene.2011.01.002. Epub 2011 Jan 15.
    [10] SHEARMAN J R, SANGSRAKRU D, RUANG-AREERATE P, et al. Assembly and analysis of a male sterile rubber tree mitochondrial genome reveals DNA rearrangement events and a novel transcript[J/OL]. BMC Plant Biol, 2014, 14:45. doi:10.1186/1471-2229-14-45.
    [11] GREILHUBER J, DOLEŽEL J, LYSÁK MA, et al. The origin, evolu-tion and proposed stabilization of the terms ‘genome size’ and ‘C-value’ to describe nuclear DNA contents[J]. Ann Bot, 2005, 95(1):255-260. doi:10.1093/aob/mci019.
    [12] BIÉMONT C. Genome size evolution:Within-species variation in genome size[J]. Heredity, 2008, 101(4):297-298. doi:10.1038/hdy. 2008.80.
    [13] PETROV D A. Evolution of genome size:New approaches to an old problem[J]. Trends Genet, 2001, 17(1):23-28. doi:10.1016/S0168-9525(00)02157-0.
    [14] KORBAN S S, WANNARAT W, RAYBURN C M, et al. Genome size and nucleotypic variation in Malus germplasm[J]. Genome, 2009, 52(2):148-155. doi:10.1139/G08-109.
    [15] YAN H H, MARTIN S L, BEKELE W A, et al. Genome size variation in the genus Avena [J]. Genome, 2016, 59(3):209-220. doi:10.1139/gen-2015-0132.
    [16] SAMOLUK S S, CHALUP L, ROBLEDO G, et al. Genome sizes in diploid and allopolyploid Arachis L. species (Section Arachis)[J]. Genet Resour Crop Evol, 2015, 62(5):747-763. doi:10.1007/s10722-014-0193-3.
    [17] CASTRO S, LOUREIRO J, RODRIGUEZ E, et al. Evaluation of poly-somaty and estimation of genome size in Polygala vayredae and P. calcarea using flow cytometry[J]. Plant Sci, 2007, 172(6):1131-1137. doi:10.1016/j.plantsci.2007.03.002.
    [18] LIU J, KONG G H, NI S B, et al. Estimation of genomic C value of Macadamia integrifolia spp. by flow cytometry[J]. Chin Agric Sci Bull, 2013, 29(34):96-101. doi:10.11924/j.issn.1000-6850.2013-1305. 柳觐, 孔广红, 倪书邦, 等. 基于流式细胞术的澳洲坚果基因组C值测定[J]. 中国农学通报, 2013, 29(34):96-101. doi:10.11924/j. issn.1000-6850.2013-1305.
    [19] LIU J, LI K X, KONG G H, et al. Genome size and variation analysis of mango (Mangifera indica L.) germplasms in Yunnan by flow cyto-metry[J]. J Trop Subtrop Bot, 2015, 23(4):386-390. doi:10.11926/j. issn.1005-3395.2015.04.004. 柳觐, 李开雄, 孔广红, 等. 云南芒果种质基因组大小测定与变异分析[J]. 热带亚热带植物学报, 2015, 23(4):386-390. doi:10.11926/j.issn.1005-3395.2015.04.004.
    [20] LIU J, KONG G H, LI K X, et al. Estimation of genomic C value of Mangifera indica L. by flow cytometry[J]. Chin J Trop Crop, 2015, 36(9):1626-1630. doi:10.3969/j.issn.1000-2561.2015.09.013. 柳觐, 孔广红, 李开雄, 等. 基于流式细胞术的芒果基因组C值测定[J]. 热带作物学报, 2015, 36(9):1626-1630. doi:10.3969/j.issn.1000-2561.2015.09.013.
    [21] OTTO F. DAPI staining of fixed cells for high-resolution flow cyto-metry of nuclear DNA[J]. Methods Cell Biol, 1990, 33:105-110. doi:10.1016/S0091-679X(08)60516-6.
    [22] DOLEZEL J, GREILHUBER J, SUDA J. Estimation of nuclear DNA content in plants using flow cytometry[J]. Nat Protoc, 2007, 2(9):2233-2244. doi:10.1038/nprot.2007.310.
    [23] Royal Botanic Gardens, Kew. Plant DNA C-values database[EB/OL]. (2012-12-01)[2017-07-20]. http://data.kew.org/cvalues.
    [24] XU Z L, YU B Y, XU L S. Numerical analysis of the euphorbiaceae[J]. J Trop Subtrop Bot, 2004, 12(5):399-404. doi:10.3969/j.issn.1005-3395.2004.05.002. 徐增莱, 余伯阳, 徐珞珊. 大戟科植物分类的数值分析[J]. 热带亚热带植物学报, 2004, 12(5):399-404. doi:10.3969/j.issn.1005-3395. 2004.05.002.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

柳觐,牛迎凤,吴裕,毛常丽,张凤良,刘紫艳,郑诚,龙青姨,李国华.巴西橡胶树栽培种质基因组C值测定和变异分析[J].热带亚热带植物学报,2018,26(5):523~528

复制
分享
文章指标
  • 点击次数:1060
  • 下载次数: 793
  • HTML阅读次数: 389
  • 引用次数: 0
历史
  • 收稿日期:2017-12-07
  • 最后修改日期:2018-03-02
  • 在线发布日期: 2018-09-18
文章二维码