樟科幼树水分生理特征的种间差异和相关性分析
作者:
基金项目:

国家重点研发计划项目(2016YFD0600201);国家自然科学基金项目(31170306)资助


Interspecific Comparisons and Correlation Analysis of Water Physiological Characteristics of Tree Saplings of Lauraceae
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了阐明樟科(Lauraceae)幼树的水分生理特征,比较了同质园中自然生长的5年生刨花楠(Machilus pauhoi)、香樟(Cinnamomum camphora)和闽楠(Phoebe bournei)幼树在生长季节叶片的水分生理特征和地径(D)、株高(H)的差异。结果表明,香樟的相对含水量(RWC)、叶片水势(Ψ)、枝条木质部比导率(Ks)都显著高于闽楠和刨花楠(P<0.05),而枝条木质部导水损失率(PLC)则显著低于闽楠和刨花楠(P<0.05),说明香樟具有更高的保水能力、水分传输效率,并对水分缺失具有更高的抵抗力。3物种幼树均会因枝条空穴化的加强而降低枝条水分的运输效率。刨花楠幼树通过提高水分利用效率以应对导水效率的降低,香樟幼树叶片具有较高的含水量,气孔保持膨胀,可实现较高的蒸腾速率,闽楠幼树通过提高水分运输的效率和安全性以维持叶片相对含水量。

    Abstract:

    In order to understand the water use ability of Lauraceae species, the water physiological characteristics and ground diameter (D), tree height (H) of three five-year-old saplings, including Machilus pauhoi, Cinnamomum camphora and Phoebe bournei grown in common garden were compared in growth season. The results showed that the water content (RWC), water potential (Ψ) and branch specific conductivity (Ks) in C. camphora were significantly higher than those of M. pauhoi and P. bournei, while the loss rate of hydraulic conductivity (PLC) were significantly lower (P<0.05). It indicated that C. camphora had high water retention capacity, water use efficiency and water loss resistance among the three species. Therefore, three saplings reduced efficiency of water transportation due to strengthening of cavitation. Machilus pauhoi saplings increased water use efficiency to cope with reduction of water transfer efficiency. The leaves of C. camphora saplings had high water content, which kept stomata inflate to achieve high transpiration rate. Phoebe bournei saplings could maintain relative water content of leaves by increasing efficiency and safety of water transport.

    参考文献
    [1] LI J, LI X W. Advances in Lauraceae systematic research on the world scale[J]. Acta Bot Yunnan, 2004, 26(1):1-11. doi:10.3969/j.issn.2095-0845.2004.01.001. 李捷, 李锡文. 世界樟科植物系统学研究进展[J]. 云南植物研究, 2004, 26(1):1-11. doi:10.3969/j.issn.2095-0845.2004.01.001.
    [2] PEI P, ZHONG Q L, CHENG D L, et al. The effect of nitrogen and phosphorus foliage spray on the growth of young free growing Machilus pauhoi plantations[J]. Chin J Appl Environ Biol, 2016, 22(5):831-838. doi:10.3724/SP.J.1145.2016.04048. 裴盼, 钟全林, 程栋梁, 等. 氮磷叶片喷施对未郁闭刨花楠人工幼林生长的影响[J]. 应用与环境生物学报, 2016, 22(5):831-838. doi:10.3724/SP.J.1145.2016.04048.
    [3] LONG H L, LIANG G P, GU Y J, et al. A study of growing charac-teristics of Cinnamomum camphora plantations in Sichuan[J]. J Sichuan For Sci Technol, 2011, 32(4):1-4. doi:10.3969/j.issn.1003-5508.2011.04.001. 龙汉利, 梁国平, 辜云杰, 等. 四川香樟人工林生长特性研究[J]. 四川林业科技, 2011, 32(4):1-4. doi:10.3969/j.issn.1003-5508.2011. 04.001.
    [4] WANG Z X, ZHU J M, WANG J, et al. The response of photosynthetic characters and biomass allocation of P. bournei young trees to different light regimes[J]. Acta Ecol Sin, 2012, 32(12):3841-3848. doi:10.5846/stxb201112021842. 王振兴, 朱锦懋, 王健, 等. 闽楠幼树光合特性及生物量分配对光环境的响应[J]. 生态学报, 2012, 32(12):3841-3848. doi:10.5846/stxb201112021842.
    [5] DENG S J, LIAO L P, WANG S L, et al. Bioproductivity of Castanopsis hysrix-Cyclobalanopsis glauca-Machilus pauhoi community in Huitong, Hunan[J]. Chin J Appl Ecol, 2000, 11(5):651-654. 邓仕坚, 廖利平, 汪思龙, 等. 湖南会同红栲-青冈-刨花楠群落生物生产力的研究[J]. 应用生态学报, 2000, 11(5):651-654.
    [6] ZHONG Q L, CHEN D L, HU S Z, et al. Chlorophyll content and net photosynthetic rate of Machilus pauhoi and M. leptophylla[J]. Chin J Appl Ecol, 2009, 20(2):271-276. 钟全林, 程栋梁, 胡松竹, 等. 刨花楠和华东润楠叶绿素含量分异特征及与净光合速率的关系[J]. 应用生态学报, 2009, 20(2):271-276.
    [7] LU M J, JIANG H, LI W, et al. Effect of simulated acid rain on growth and photosynthetic physiology of Machilus pauhoi[J]. Acta Ecol Sin, 2009, 29(11):5986-5994. doi:10.3321/j.issn:1000-0933.2009.11.029. 鲁美娟, 江洪, 李巍, 等. 模拟酸雨对刨花楠幼苗生长和光合生理的影响[J]. 生态学报, 2009, 29(11):5986-5994. doi:10.3321/j.issn:1000-0933.2009.11.029.
    [8] WANG K Q, WANG B T, WANG B R, et al. Studies on the growth of forests with different density in the system of afforestation by water-harvesting[J]. Sci Silv Sin, 2002, 38(2):54-60. doi:10.3321/j.issn:1001-7488.2002.02.010. 王克勤, 王百田, 王斌瑞, 等. 集水造林不同密度林分生长研究[J]. 林业科学, 2002, 38(2):54-60. doi:10.3321/j.issn:1001-7488.2002.02.010.
    [9] HU Y, HU T X, CHEN H, et al. Physiological properties and growth of Cinnamomum camphora saplings under drought stress and rewatering[J]. Acta Bot Boreali-Occid Sin, 2015, 35(2):294-301. doi:10.7606/j. issn.1000-4025.2015.02.0294. 胡义, 胡庭兴, 陈洪, 等. 干旱胁迫及复水对香樟幼树生理特性及生长的影响[J]. 西北植物学报, 2015, 35(2):294-301. doi:10.7606/j.issn.1000-4025.2015.02.0294.
    [10] WANG Z M, ZHENG X Y, XUE L. Physiological responses of Cinna-momum camphora seedlings to drought stress and planting density[J]. Chin J Ecol, 2017, 36(6):1495-1502. doi:10.13292/j.1000-4890. 201706.033. 王卓敏, 郑欣颖, 薛立. 樟树幼苗对干旱胁迫和种植密度的生理响应[J]. 生态学杂志, 2017, 36(6):1495-1502. doi:10.13292/j.1000-4890.201706.033.
    [11] WANG J P, WANG S T,YUE J M, et al. Physiological response of Cinnamomum camphora seedlings to NaCl stress[J]. Sci Soil Water Conserv, 2016, 14(5):82-89. doi:10.16843/j.sswc.2016.05.011. 王金平, 王舒甜, 岳健敏,等. 香樟幼苗对NaCl胁迫的生理响应[J]. 中国水土保持科学, 2016, 14(5):82-89. doi:10.16843/j.sswc.2016. 05.011.
    [12] TANG X Y, YANG W G, SHEN A H, et al. Biomass allocation pattern and water characteristics of each component of Phoebe bournei container seedling[J]. Bull Bot Res, 2012, 32(1):99-104. doi:10.7525/j.issn.1673-5102.2012.01.016唐小燕, 袁位高, 沈爱华, 等. 闽楠容器苗各器官生物量的分配格局及水分特征研究[J]. 植物研究, 2012, 32(1):99-104. doi:10.7525/j.issn.1673-5102.2012.01.016
    [13] LI C, ZHAO G D, WANG B, et al. Interspecific differences and corre-lation among leaf structural traits of three plant seedlings of Lauraceae in the mid-subtropical zone of China[J]. Plant Sci J, 2016, 34(1):27-37. doi:10.11913/PSJ.2095-0837.2016.10027. 李超, 赵广东, 王兵, 等. 中亚热带樟科3种植物幼苗叶结构型性状的种间差异及其相关性[J]. 植物科学学报, 2016, 34(1):27-37. doi:10.11913/PSJ.2095-0837.2016.10027.
    [14] WAGN Z Y, ZHAO G D, WANG B, et al. Responses of leaf functional traits of Castanopsis fargesii, Castanopsis sclerophylla and Cycloba-lanopsis glauca seedlings to warming and nitrogen addition under artificial control conditions[J]. J NE For Univ, 2014, 42(12):43-49. doi:10.3969/j.issn.1000-5382.2014.12.009. 王致远, 赵广东, 王兵, 等. 丝栗栲、苦槠和青冈幼苗叶片功能性状对增温和施氮的响应[J]. 东北林业大学学报, 2014, 42(12):43-49. doi:10.3969/j.issn.1000-5382.2014.12.009.
    [15] LI D S, SHI Z M, LIU S R, et al. Variation of functional traits of Quercus seedlings from different provenances of temperate zone of NSTEC[J]. For Res, 2013, 26(2):156-162. doi:10.3969/j.issn.1001-1498.2013.02.005. 李东胜, 史作民, 刘世荣, 等. 南北样带温带区栎属树种幼苗功能性状的变异研究[J]. 林业科学研究, 2013, 26(2):156-162. doi:10. 3969/j.issn.1001-1498.2013.02.005.
    [16] YU Z Q, ZHAO G D, WANG B, et al. Effects of warming and nitrogen application on the growth status of Castanopsis fargesii and Casta-nopsis sclerophyll seedlings under artificial control conditions[J]. Acta Agric Univ Jiangxi, 2013, 35(1):102-107. doi:10.3969/j.issn.1000-2286.2013.01.019. 喻志强, 赵广东, 王兵, 等. 人工控制增温和施氮对丝栗栲和苦槠幼苗生长状况的影响[J]. 江西农业大学学报, 2013, 35(1):102-107. doi:10.3969/j.issn.290404.86.2013.01.019.
    [17] HAYATU M, MUHAMMAD S Y, HABIBU U A. Effect of water stress on the leaf relative water content and yield of some cowpea (Vigna unguiculata (L.) Walp.) genotype[J]. Int J Sci Technol Res, 2014, 3(7):148-152.
    [18] BRODRIBB T J, Holbrook N M. Changes in leaf hydraulic conductance during leaf shedding in seasonally dry tropical forest[J]. New Phytol, 2003, 158(2):295-303. doi:10.1046/j.1469-8137.2003. 00736.x.
    [19] FARQUHAR G D, RICHARDS R A. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes[J]. Aust J Plant Physiol, 1984, 11(6):539-552.
    [20] ZHOU H H, CHEN Y N, LI W H, et al. Xylem hydraulic conductivity and embolism in riparian plants and their responses to drought stress in desert of northwest China[J]. Ecohydrology, 2013, 6(6):984-993. doi:10.1002/eco.1412.
    [21] TRIFILÒ P, LO GULLO M A, NARDINI A, et al. Rootstock effects on xylem conduit dimensions and vulnerability to cavitation of Olea europaea L.[J]. Trees, 2007, 21(5):549-556. doi:10.1007/s00468-007-0148-9.
    [22] ZHOU H H, LI W H. Responses and adaptation of xylem hydraulic conductivity to salt stress in Populus euphratica[J]. Chin J Plant Ecol, 2015, 39(1):81-91. doi:10.17521/cjpe.2015.0009. 周洪华, 李卫红. 胡杨木质部水分传导对盐胁迫的响应与适应[J]. 植物生态学报, 2015, 39(1):81-91. doi:10.17521/cjpe.2015.0009.
    [23] MARSHALL J G, RUTLEDGE R G, BLUMWALD E, et al. Reduction in turgid water volume in jack pine, white spruce and black spruce in response to drought and paclobutrazol[J]. Tree Physiol, 2000, 20(10):701-707. doi:10.1093/treephys/20.10.701.
    [24] DENG X, LI X M, ZHANG X M, et al. A study of the gas exchange characteristics of four desert plants[J]. Chin J Plant Ecol, 2002, 26(5):605-612. 邓雄, 李小明, 张希明, 等. 4种荒漠植物气体交换特征的研究[J]. 植物生态学报, 2002, 26(5):605-612.
    [25] TAN J, GUO J C, WU J Q, et al. Transpiration of Eucalyptus grandis×E. urophylla and Pinus massoniana in typical reservoir watershed in Guangxi[J]. Chin J Ecol, 2016, 35(3):576-583. doi:10.13292/j.1000-4890.201603.013. 谭娟, 郭晋川, 吴建强, 等. 广西典型水库集水区巨尾桉和马尾松蒸腾作用[J]. 生态学杂志, 2016, 35(3):576-583. doi:10.13292/j.1000-4890.201603.013.
    [26] HU Z M, YU G R, WANG Q F, et al. Ecosystem level water use efficiency:A review[J]. Acta Ecol Sin, 2009, 29(3):1498-1507. doi:10.3321/j.issn:1000-0933.2009.03.048胡中民, 于贵瑞, 王秋凤, 等. 生态系统水分利用效率研究进展[J]. 生态学报, 2009, 29(3):1498-1507. doi:10.3321/j.issn:1000-0933. 2009.03.048.
    [27] TYREE M T, SPERRY J S. Vulnerability of xylem to cavitation and embolism[J]. Ann Rev Plant Physiol Mol Biol, 1989, 40:19-36. doi:10.1146/annurev.pp.40.060189.000315
    [28] LI J Y, ZHAI H B. Hydraulic architecture and drought resistance of woody plants[J]. Chin J Appl Ecol, 2000, 11(2):301-305. 李吉跃, 翟洪波. 木本植物水力结构与抗旱性[J]. 应用生态学报, 2000, 11(2):301-305.
    [29] KONÔPKA B, PAJTÍK J, NOGUCHI K, et al. Replacing Norway spruce with European beech:A comparison of biomass and net primary production patterns in young stands[J]. For Ecol Manage, 2013, 302:185-192. doi:10.1016/j.foreco.2013.03.026.
    [30] BLACKMAN C J, BRODRIBB T J, JORDAN G J. Leaf hydraulic vulnerability is related to conduit dimensions and drought resistance across a diverse range of woody angiosperms[J]. New Phytol, 2010, 188(4):1113-1123. doi:10.1111/j.1469-8137.2010.03439.x.
    [31] McCULLOH K A, MEINZER F C, SPERRY J S, et al. Comparative hydraulic architecture of tropical tree species representing a range of successional stages and wood density[J]. Oecologia, 2011, 167(1):27-37. doi:10.1007/s00442-011-1973-5.
    [32] JOHNSON D M, MCCULLOH K A, MEINZER F C, et al. Hydraulic patterns and safety margins, from stem to stomata, in three eastern U.S. tree species[J]. Tree Physiol, 2011, 31(6):659-668. doi:10.1093/tree phys/tpr050.
    [33] AYOUPU Mubareke, CHEN Y N, HAO X M, et al. Xylem hydraulic traits of Populus euphratica Oliv. in extremely drought environment[J]. Acta Ecol Sin, 2012, 32(9):2748-2758. doi:10.5846/stxb201103290404. 木巴热克?阿尤普, 陈亚宁, 郝兴明, 等. 极端干旱环境下的胡杨木质部水力特征[J]. 生态学报, 2012, 32(9):2748-2758. doi:10.5846/stxb201103.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

常宏,赵广东,史作民,王兵,厉月桥,陈传松,陈和东.樟科幼树水分生理特征的种间差异和相关性分析[J].热带亚热带植物学报,2018,26(5):457~464

复制
分享
文章指标
  • 点击次数:955
  • 下载次数: 771
  • HTML阅读次数: 348
  • 引用次数: 0
历史
  • 收稿日期:2017-11-22
  • 最后修改日期:2018-03-06
  • 在线发布日期: 2018-09-18
文章二维码