不同光照强度对假紫万年青生长和叶绿素荧光参数的影响
作者:
基金项目:

广东省教育厅高等学校特色研究项目(2014KTSCX142);广东省科技厅科技计划项目(2014A030304063)资助


Effect of Light Intensity on Growth and Chlorophyll Fluorescence Parameters of Belosynapsis ciliata
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [40]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了解光照对假紫万年青(Belosynapsis ciliata)生长的影响,研究了不同光照强度下假紫万年青形态特征和叶绿素荧光参数的变化。结果表明,随着遮阴强度的增加,假紫万年青的自然株高有所增加,节数、茎粗、分枝数和茎长度均减少;而不同光照强度对假紫万年青节间长的影响不明显;其叶绿素a、叶绿素b、叶绿素总含量和叶绿素a/b先增加后又减少,以15.2%NS时达到最大。叶绿素b含量与叶绿素荧光的Fv/Fm呈负相关,Fv/Fm为0.75~0.8。因此,在高光照条件下,假紫万年青匍匐近地生长,随着光照条件的逐渐减弱,趋向直立生长。在屋顶绿化种植的初期采用适度遮阴(35.2%NS)可使其更好的生长,加速成坪,降低管理成本。

    Abstract:

    In order to understand the effect of illumination on the growth of Belosynapsis ciliate, the changes in morphological character and chlorophyll fluorescence were studied under different light intensity by using artificial shading method. The results showed that with the increment of shading intensity, the height of B. ciliata increased, but the node number, stem diameter, and length of branch decreased, the internode length was not obvious change, while the chlorophyll a, chlorophyll b, total chlorophyll contents and chlorophyll a/b increased at first and then decreased, and reached up to the maximum under 15.2%NS. The Fv/Fm of B. ciliata had negatively correlated with chlorophyll b content, which ranged from 0.75 to 0.8. So, it was suggested that B. ciliata grown prostrate near ground under high light, and tend to erect with weaken of light. Therefore, appropriate shade (35.1%NS) could promote growth of B. ciliata at early roof greening, accelerate turf and reduce management cost.

    参考文献
    [1] Tang C. Studies on the selection of plants and substrates of roof greening of lawn-style in Guangzhou[D]. Guangzhou:Zhongkai University of Agriculture Engineering, 2013:7-8. 汤聪. 广州地区草坪式屋顶绿化植物筛选及栽培基质研究[D]. 广州:仲恺农业工程学院, 2013:7-8.
    [2] WU G F, MA W L, HONG D Y, et al. Flora Reipublicae Popularis Sinicae, Tomus 13(3)[M]. Beijing:Science Press, 1997:106. 吴国芳, 马玮梁, 洪德元, 等. 中国植物志, 第13卷第3分册[M]. 北京:科学出版社, 1997:106.
    [3] ALPERT P, SIMMS E L. Relative advantages of plasticity and fixity in different environments:when is it good for a plant to adjust?[J]. Evol Ecol, 2002, 16(3):285-297. doi:10.1023/A:1019684612767.
    [4] ZHANG W Y, WANG B S, LI M G, et al. The effects of light intensity on growth and morphology in Mikania micrnatha seedlings[J]. Sun Yatsen Univ Forum, 2002, 22(1):222-226. doi:10.3969/j.issn.1674-3202.2002.01.070. 张炜银, 王伯荪, 李鸣光, 等. 不同光照强度对薇甘菊幼苗生长和形态的影响[J]. 中山大学学报论丛, 2002, 22(1):222-226. doi:10. 3969/j.issn.1674-3202.2002.01.070.
    [5] SULTAN S E. Phenotypic plasticity in plants:a case study in ecological development[J]. Evol Dev, 2003, 5(1):25-33. doi:10. 1046/j.1525-142X.2003.03005.x.
    [6] RICHARDS C L, BOSSDORF O, MUTH N Z, et al. Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions[J]. Ecol Lett, 2006, 9(8):981-993. doi:10.1111/j.1461-0248.2006. 00950.x.
    [7] WANG R, SUN B, LI J D, et al. Effects of light intensity on the phenotypic plasticity of invasive species Ambrosia trifida[J]. Chin J Appl Ecol, 2012, 23(7):1797-1802. doi:10.13287/j.1001-9332.2012. 0206. 王蕊, 孙备, 李建东, 等. 不同光强对入侵种三裂叶豚草表型可塑性的影响[J]. 应用生态学报, 2012, 23(7):1797-1802. doi:10. 13287/j.1001-9332.2012.0206.
    [8] ZHANG Z Y, ZHANG Z J, PAN X Y. Phenotypic plasticity of Alternanthera philoxeroides in response to shading:Introduced vs. native populations[J]. Biodiv Sci, 2015, 23(1):18-22. doi:10.17520/biods.2014065. 张紫妍, 张致杰, 潘晓云. 喜旱莲子草对遮荫的可塑性反应:入侵地与原产地种群的比较[J]. 生物多样性, 2015, 23(1):18-22. doi:10.17520/biods.2014065.
    [9] YOU Y, YE Y Z. Effect of plant hormones on Fv/Fo and Fv/Fm in Dioscorea zingiberensis leaves[J]. J Anhui Agric Sci, 2007, 35(19):5701-5702,5724. doi:10.3969/j.issn.1004-3918.2007.06.014. 尤扬, 叶永忠. 植物激素对黄姜叶片Fv/Fo和Fv/Fm的影响[J]. 安徽农业科学, 2007, 35(19):5701-5702,5724. doi:10.3969/j.issn. 1004-3918.2007.06.014.
    [10] GUI K Y, WEN L J, LI Y L, et al. Effects of different illumination on Scindapsus aureus phenotypic plasticity[J]. J Anhui Agric Sci, 2009, 37(21):9956-9960. doi:10.3969/j.issn.0517-6611.2009.21.055. 桂克印, 文亮晶, 李炎林, 等. 不同光照处理对绿萝表型可塑性的影响[J]. 安徽农业科学, 2009, 37(21):9956-9960. doi:10.3969/j. issn.0517-6611.2009.21.055.
    [11] WANG Y Y, ZHANG H J, YANG X W, et al. Phenotypic plasticity of Alternanthera philoxeroides under different light intensities[J]. Chin Hort Abstr, 2012, 28(1):17-18. doi:10.3969/j.issn.1672-0873.2012. 01.009. 王英英, 张惠娟, 杨小维, 等. 不同光照强度下空心莲子草形态可塑性研究[J]. 中国园艺文摘, 2012, 28(1):17-18. doi:10.3969/j. issn.1672-0873.2012.01.009.
    [12] WU G L, SUN Y, SHEN G Z, et al. Diurnal changes of net photo-synthetic rate and chlorophyll fluorescence parameters of Cymbidium hybrid nobuko under different light intensities[J]. J Zhejiang Univ (Agric Life Sci), 2009, 35(6):607-612. doi:10.3785/j.issn.1008-9209. 2009.06.003. 吴根良, 孙瑶, 沈国正, 等. 不同光照条件下大花蕙兰净光合速率和叶绿素荧光参数的日变化[J]. 浙江大学学报(农业与生命科学版), 2009, 35(6):607-612. doi:10.3785/j.issn.1008-9209.2009.06.003.
    [13] CHENG H T, FAN Z W, HUANG Q Q, et al. Ecophysiology of Mikania micrantha H. B. K under different light conditions[J]. Chin J Trop Crops, 2012, 33(3):523-528. doi:10.3969/j.issn.1000-2561. 2012.03.024. 程汉亭, 范志伟, 黄乔乔, 等. 薇甘菊在不同光环境下的生理生态研究[J]. 热带作物学报, 2012, 33(3):523-528. doi:10.3969/j.issn. 1000-2561.2012.03.024.
    [14] YE L H, HUANG X L, YI L S, et al. Diurnal changes of chlorophyll fluorescence parameters of three ornamental and floral plants[J]. Hunan For Sci Technol, 2013, 40(1):32-35,72. doi:10.3969/j.issn. 1003-5710.2013.01.009. 叶龙华, 黄香兰, 易立飒, 等. 三种花卉植物的叶绿素荧光参数日变化研究[J]. 湖南林业科技, 2013, 40(1):32-35,72. doi:10.3969/j. issn.1003-5710.2013.01.009.
    [15] BASSETT I E, PAYNTER Q, BEGGS J R. Effect of artificial shading on growth and competitiveness of Alternanthera philoxeroides (alli-gator weed)[J]. N Z J Agric Res, 2011, 54(4):251-260. doi:10.1080/00288233.2011.599396.
    [16] ZHANG X Z. Determination of chlorophyll content in plant:A method of mixture of acetone and ethanol[J]. Liaoning Agric Sci, 1986(3):26-28. 张宪政. 植物叶绿素含量测定——丙酮乙醇混合液法[J]. 辽宁农业科学, 1986(3):26-28.
    [17] LISCUM E, STOWE-EVANS E L. Phototropism:A "simple" physio-logical response modulated by multiple interacting photosensory-response pathways[J]. Photochem Photobiol, 2000, 72(3):273-282. doi:10.1562/0031-8655(2000)0720273PASPRM2.0.CO2.
    [18] LUSK C H, REICH P B, MONTGOMERY R A, et al. Why are ever-green leaves so contrary about shade?[J]. Trends Ecol Evol, 2008, 23(6):299-303. doi:10.1016/j.tree.2008.02.006.
    [19] GUO Y H, YUAN C, TANG L, et al. Responses of clonal growth and photosynthesis in Amomum villosum to different light environments[J]. Photosynthetica, 2016, 54(3):396-404. doi:10.1007/s11099-016-0194-x.
    [20] YUAN C M, WU T, GENG Y F, et al. Phenotypic plasticity of lianas in response to altered light environment[J]. Ecol Res, 2016, 31(3):375-384. doi:10.1007/s11284-016-1343-1.
    [21] DU L S, LIU H Y, YAN M, et al. Individual plasticity of the shade response of the invasive Solidago canadensis in China[J]. PLoS One, 2017, 12(1):e0170049. doi:10.1371/journal.pone.0170049.
    [22] TAO J P, ZHONG Z C. Effects of light on morphological plasticity and biomass allocation of Momordica charantia [J]. Chin J Appl Ecol, 2003, 14(3): 336–340. doi: 10.13287/j.1001-9332.2003.0076. 陶建平, 钟章成. 光照对苦瓜形态可塑性及生物量配置的影响 [J]. 应用生态学报, 2003, 14(3): 336–340. doi: 10.13287/j.1001-9332. 2003.0076.
    [23] YANG Y F, ZHU T C. Plant Ecology [M]. 2nd ed. Beijing: Higher Education Press, 2011: 185–214. 杨允菲, 祝廷成. 植物生态学 [M]. 第2版. 北京: 高等教育出版社, 2011: 185–214.
    [24] RODRíGUEZ-LóPEZ N F, MARTINS S C V, CAVATTE P C, et al. Morphological and physiological acclimations of coffee seedlings to growth over a range of fixed or changing light supplies [J]. Environ Exp Bot, 2014, 102: 1–10. doi: 10.1016/j.envexpbot.2014.01.008.
    [25] CATONI R, GRANATA M U, SARTORI F, et al. Corylus avellana responsiveness to light variations: Morphological, anatomical, and physiological leaf trait plasticity [J]. Photosynthetica, 2015, 53(1): 35–46. doi: 10.1007/s11099-015-0078-5.
    [26] PIRES M V, ALMEIDA A A F, FIGUEIREDO A L, et al. Photosynthetic characteristics of ornamental passion flowers grown under different light intensities [J]. Photosynthetica, 2011, 49(4): 593–602. doi: 10.1007/s11099-011-0075-2.
    [27] MAXWELL K, JOHNSON G N. Chlorophyll fluorescence: A practical guide [J]. J Exp Bot, 2000, 51(345): 659–668. doi: 10.1093/jexbot/51.345.659.
    [28] WANG Y, WEI X L. Advance on the effects of different light environments on growth, physiological biochemistry and morpho-structure of plant [J]. J Mountain Agric Biol, 2010, 29(4): 353–359,370. doi: 10. 3969/j.issn.1008-0457.2010.04.017. 王艺, 韦小丽. 不同光照对植物生长、生理生化和形态结构影响的研究进展 [J]. 山地农业生物学报, 2010, 29(4): 353–359,370. doi: 10. 3969/j.issn.1008-0457.2010.04.017.
    [29] XIAO T T, LIU G L, ZHANG X, et al. Effects of different light intensity on seedling growth and leaf color change of Acer palmatum seedlings [J]. Jiangsu Agric Sci, 2016, 44(3): 220–223. doi: 10.15889/ j.issn.1002-1302.2016.03.061. 肖婷婷, 刘广林, 张鑫, 等. 不同光照度对美国红枫幼苗生长和叶色变化的影响 [J]. 江苏农业科学, 2016, 44(3): 220–223. doi: 10. 15889/j.issn.1002-1302.2016.03.061.
    [30] DAI Y J, SHEN Z G, LIU Y, et al. Effects of shade treatments on the photosynthetic capacity, chlorophyll fluorescence, and chlorophyll content of Tetrastigma hemsleyanum Diels et Gilg [J]. Environ Exp Bot, 2009, 65(2/3): 177–182. doi: 10.1016/j.envexpbot.2008.12.008.
    [31] HUANG D, WU L, CHEN J R, et al. Morphological plasticity, photosynthesis and chlorophyll fluorescence of Athyrium pachyphlebium at different shade levels [J]. Photosynthetica, 2011, 49(4): 611–618. doi: 10.1007/s11099-011-0076-1.
    [32] FAVARETTO V F, MARTINEZ C A, Soriani H H, et al. Differential responses of antioxidant enzymes in pioneer and late-successional tropical tree species grown under sun and shade conditions [J]. Environ Exp Bot, 2011, 70(1): 20–28. doi: 10.1016/j.envexpbot.2010.06.003.
    [33] CAMPOS H, TREJO C, PE?A-VALDIVIA C B, et al. Photosynthetic acclimation to drought stress in Agave salmiana Otto ex Salm-Dyck seedlings is largely dependent on thermal dissipation and enhanced electron flux to photosystem I [J]. Photosynth Res, 2014, 122(1): 23–39. doi: 10.1007/s11120-014-0008-6.
    [34] LIU S L, YANG R J, RRN B, et al. Differences in photosynthetic capacity, chlorophyll fluorescence, and antioxidant system between invasive Alnus formosana and its native congener in response to different irradiance levels [J]. Botany, 2016, 94(12): 1087–1101. doi: 10.1139/cjb-2016-0026.
    [35] BAKER N R. Chlorophyll fluorescence: A probe of photosynthesis in vivo [J]. Annu Rev Plant Biol, 2008, 59: 89–113. doi: 10.1146/annurev. arplant.59.032607.092759.
    [36] WALTERS R G. Towards an understanding of photosynthetic acclimation [J]. J Exp Bot, 2005, 56(411): 435–447. doi: 10.1093/jxb/eri060.
    [37] KOIKE T, KITAO M, MARUYAMA Y, et al. Leaf morphology and photosynthetic adjustments among deciduous broad-leaved trees within the vertical canopy profile [J]. Tree Physiol, 2001, 21(12/13): 951–958. doi: 10.1093/treephys/21.12-13.951.
    [38] GONG H D, WANG H, JIAO D Y, et al. Phenotypic plasticity of seedlings of five tropical tree species in response to different light and nutrient availability [J]. Trop Ecol, 2016, 57(4): 727–737.
    [39] WANG C Y, XIAO H G, LIU J, et al. Differences in leaf functional traits between red and green leaves of two evergreen shrubs Photinia × fraseri and Osmanthus fragrans [J]. J For Res, 2017, 28(3): 473–479. doi: 10.1007/s11676-016-0346-7.
    [40] ROILOA S R, RETUERTO R, CAMPOY J G, et al. Division of labor brings greater benefits to clones of Carpobrotus edulis in the non-native range: Eevidence for rapid adaptive evolution [J]. Front Plant Sci, 2016, 7: 349. doi: 10.3389/fpls.2016.00349.
    引证文献
引用本文

郭微,刘萍,邓磊,王金将,洪岚,陈平,孙延军.不同光照强度对假紫万年青生长和叶绿素荧光参数的影响[J].热带亚热带植物学报,2018,26(3):255~261

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-09-06
  • 最后修改日期:2017-12-06
  • 在线发布日期: 2018-05-29
文章二维码