浙北52种景观树种对大气硫、氟污染物吸收富集能力研究
作者:
基金项目:

中国林业科学研究院与浙江省合作项目(16204002,16204005);嘉兴市科学技术局公益性应用技术研究计划项目(2014AY21019);浙江省林科院应用技术研究项目(14204005)资助


Study on the Enrichment Abilities of 52 Landscape Trees on Atmospheric Sulfur and Fluorine Pollutions in Northern Zhejiang
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为探究浙北地区常见景观树种对大气硫、氟污染物的吸收净化能力,采用典型调查法对嘉兴市北部化工区(污染区)和中央公园(清洁区)共52种景观树种叶片的硫、氟含量进行测定,对其在污染环境中吸收富集硫、氟污染物的能力进行评价。结果表明,浙北地区52种景观树种叶片硫、氟含量差异较大,不同采样点和不同生活型之间的变异也较大。灌木树种叶片硫和氟含量略低于乔木,但高于小乔木;落叶树种叶片硫和氟含量均高于常绿树种。依据叶片对硫、氟的生物富集系数(BCF)和叶片的硫、氟含量,将这52种景观植物分为5大类,筛选出对硫、氟污染的综合修复能力较强的树种,如杨树(Pterocarya stenoptera)、柳树(Salix babylonica)、火棘(Pyracantha fortuneana)、广玉兰(Magnolia grandiflora)、红花继木(Loropetalum chinense)、榉树(Zelkova serrata)、桂花(Osmanthus fragrans)和红枫(Acer palmatum‘Atropurpureum’)等。这些可为浙北地区植物修复化工区硫、氟污染研究提供借鉴。

    Abstract:

    To evaluate the absorption and purgation capacity of 52 landscape trees to atmospheric sulfur (S) and fluorine (F) pollution in Northern Zhejiang, the leaf S and F contents of trees grown in chemical industry zone (pollution area) and Central Park (clean area) were determined, and their phytoremediation capabilities to pollution environment were evaluated. The results showed that there were significant differences in leaf S and F contents among 52 species, and variations between different sampling points and different life forms were also significant. The absorption efficiencies of shrub on S and F were both slightly lower than that of arbor, but higher than small arbor, meanwhile, the leaf S and F contents of deciduous species were higher than that of evergreen species. According to the leaf bioconcentration factors (BCF) and contents of S and F in species, these 52 landscape trees could be divided into five clusters, and several species with higher comprehensive absorption ability on S and F pollutions were screened out, such as Pterocarya stenoptera, Salix babylonica, Pyracantha fortuneana, Magnolia grandiflora, Loropetalum chinense, Zelkova serrata, Osmanthus fragrans and Acer palmatum ‘Atropurpureum’, et al. These would provide references for the pollution control of S and F as well as phytoremediation in northern Zhejiang.

    参考文献
    [1] GAO S, CUI H X, FU Q Y, et al. Characteristics and source apportionment of VOCs of high pollution process at chemical industrial area in winter of China[J]. Environ Sci, 2016, 37(11):4094-4102. doi:10.13227/j.hjkx.201603104. 高松, 崔虎雄, 伏晴艳, 等. 某化工区典型高污染过程VOCs污染特征及来源解析[J]. 环境科学, 2016, 37(11):4094-4102. doi:10. 13227/j.hjkx.201603104.
    [2] DOCKERY D W. Epidemiologic evidence of cardiovascular effects of particulate air pollution[J]. Environ Health Persp, 2001, 109(S4):483-486.
    [3] ZHANG D Q, CHU G W, YU Q F, et al. Decontamination ability of garden plants to absorb sulfur dioxide and fluoride[J]. J Trop Subtrop Bot, 2003, 11(4):336-340. doi:10.3969/j.issn.1005-3395.2003.4.005. 张德强, 褚国伟, 余清发, 等. 园林绿化植物对大气二氧化硫和氟化物污染的净化能力及修复功能[J]. 热带亚热带植物学报, 2003, 11(4):336-340. doi:10.3969/j.issn.1005-3395.2003.4.005.
    [4] DU Z Y, XING S J, SONG Y M, et al. Study on traffic noise attenuation by green belts along expressway[J]. Ecol Environ, 2007, 16(1):31-35. doi:10.3969/j.issn.1674-5906.2007.01.006. 杜振宇, 邢尚军, 宋玉民, 等. 高速公路绿化带对交通噪声的衰减效果研究[J]. 生态环境, 2007, 16(1):31-35. doi:10.3969/j.issn. 1674-5906.2007.01.006.
    [5] WANG A X, ZHANG M, HUANG L B, et al. Accumulation capacity of Nanjing 14 virescence tree species to heavy metal pollutants of the atmosphere[J]. Bull Bot Res, 2009, 29(3):368-374. 王爱霞, 张敏, 黄利斌, 等. 南京市14种绿化树种对空气中重金属的累积能力[J]. 植物研究, 2009, 29(3):368-374.
    [6] FANG Y, ZHANG J C, WANG Y H. Dustfall adsorbing capacity of major species of greening trees in Nanjing and its law[J]. J Ecol Rural Environ, 2007, 23(2):36-40. doi:10.3969/j.issn.1673-4831.2007.02.008. 方颖, 张金池, 王玉华. 南京市主要绿化树种对大气固体悬浮物净化能力及规律研究[J]. 生态与农村环境学报, 2007, 23(2):36-40. doi:10.3969/j.issn.1673-4831.2007.02.008.
    [7] LIU L, GUAN D S, PEART M R. The dust retention capacities of urban vegetation:A case study of Guangzhou, south China[J]. Environ Sci Pollut Res, 2013, 20(9):6601-6610. doi:10.1007/s11356-013-1648-3.
    [8] KRÖNIGER W, RENNENBERG H, POLLE A. Purification of two superoxide dismutase isozymes and their subcellular localization in needles and roots of Norway spruce (Picea abies L.) trees[J]. Plant Physiol, 1992, 100(1):334-340. doi:10.1104/pp.100.1.334.
    [9] WU X G, LIN Y D. Impact of plant configuration mode of greening segregating belt on air quality of adjacent sidewalk in urban street[J]. Acta Sci Circumst, 2015, 35(4):984-990. doi:10.13671/j.hjkxxb.2014. 0863. 武小钢, 蔺银鼎. 城市道路隔离带绿化模式对人行道空气质量的影响评价[J]. 环境科学学报, 2015, 35(4):984-990. doi:10.13671/j. hjkxxb.2014.0863.
    [10] WANG H X, WANG Y H, YANG J, et al. Multi-scale comparisons of particulate matter and its size fractions deposited on leaf surfaces of major greening tree species[J]. Sci Silv Sin, 2015, 51(7):9-20. doi:10. 11707/j.1001-7488.20150702. 王会霞, 王彦辉, 杨佳, 等. 不同绿化树种滞留PM2.5等颗粒污染物能力的多尺度比较[J]. 林业科学, 2015, 51(7):9-20. doi:10.11707/j. 1001-7488.20150702.
    [11] HUANG Z D, WANG J, LU H, et al. Advances and applications in method for determination of sulfur by inductively coupled plasma mass spectrometry[J]. J Chin Mass Spectrom Soc, 2013, 34(1):57-64. doi:10.7538/zpxb.2013.34.01.0057. 黄志丁, 王军, 逯海, 等. 电感耦合等离子体质谱测定硫的方法研究及应用进展[J]. 质谱学报, 2013, 34(1):57-64. doi:10.7538/zpxb. 2013.34.01.0057.
    [12] ZHANG N, ZHANG L Y. Advance in the study on the detection and safety of fluoride in tea[J]. J Tea, 2009, 35(1):3-6. doi:10.3969/j.issn. 0577-8921.2009.01.002. 张楠, 张凌云. 茶叶中氟的安全性与检测方法研究进展[J]. 茶叶, 2009, 35(1):3-6. doi:10.3969/j.issn.0577-8921.2009.01.002.
    [13] CHENG S H, CHEN D H, WANG F. Rapid determination of sulfur content in marine sediment by elemental analyzer[J]. Chem Anal Met, 2010, 19(3):32-35. doi:10.3969/j.issn.1008-6145.2010.03.026. 程思海, 陈道华, 王飞. 元素分析仪法快速测定海洋地质样品中的硫[J]. 化学分析计量, 2010, 19(3):32-35. doi:10.3969/j.issn.1008-6145.2010.03.026.
    [14] ZHANG W, WEI H, SUN X C, et al. Transfer characteristics of cadmium from soil to Salix×aureo-pendula[J]. Acta Ecol Sin, 2013, 33(19):6147-6153. doi:10.5846/stxb201306091495. 张雯, 魏虹, 孙晓灿, 等. 镉在土壤-金丝垂柳系统中的迁移特征[J]. 生态学报, 2013, 33(19):6147-6153. doi:10.5846/stxb201306091495.
    [15] ARNOT J A, GOBAS F A P C. A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms[J]. Environ Rev, 2006, 14(4):257-297. doi:10.1139/a06-005.
    [16] ALI H, KHAN E, SAJAD M A. Phytoremediation of heavy metalsconcepts and applications[J]. Chemosphere, 2013, 91(7):869-881. doi:10.1016/j.chemosphere.2013.01.075.
    [17] RENUKA N, SOOD A, PRASANNA R, et al. Phycoremediation of wastewaters:A synergistic approach using microalgae for bioremediation and biomass generation[J]. Int J Environ Sci Technol, 2015, 12(4):1443-1460. doi:10.1007/s13762-014-0700-2.
    [18] CHEN Y B, HUANG J L, XU H Q, et al. The coupling mechanism and industrialization mode of ecological restoration in the weak semi arid mining area of Inner Mongolia[J]. Acta Ecol Sin, 2014, 34(1):149-153. doi:10.5846/stxb201311252807. 陈玉碧, 黄锦楼, 徐华清, 等. 内蒙古半干旱生态脆弱矿区生态修复耦合机理与产业模式[J]. 生态学报, 2014, 34(1):149-153. doi:10.5846/stxb201311252807.
    [19] STANDISH R J, HOBBS R J, MILLER J R. Improving city life:options for ecological restoration in urban landscapes and how these might influence interactions between people and nature[J]. Landscape Ecol, 2013, 28(6):1213-1221. doi:10.1007/s10980-012-9752-1.
    [20] CHEHREGANI A, NOORI M, YAZDI H L. Phytoremediation of heavy-metal-polluted soils:Screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability[J]. Ecotoxicol Environ Safe, 2009, 72(5):1349-1353. doi:10.1016/j.ecoenv.2009. 02.012.
    [21] ZENG J R, ZHANG G L, BAO L M, et al. Sulfur speciation and bioaccumulation in camphor tree leaves as atmospheric sulfur indicator analyzed by synchrotron radiation XRF and XANES[J]. J Environ Sci, 2013, 25(3):605-612. doi:10.1016/S1001-0742(12)60056-4.
    [22] ANAND M, MA K M, OKONSKI A, et al. Characterising biocomplexity and soil microbial dynamics along a smelter-damaged landscape gradient[J]. Sci Total Environ, 2003, 311(1/2/3):247-259. doi:10. 1016/S0048-9697(03)00058-5.
    [23] SONG B, WANG D X, ZHANG Y, et al. Sulfur contents in foliage of 15 ornamental trees in Yan'an[J]. J NW Agri For Univ (Nat Sci), 2014, 42(5):91-96. doi:10.13207/j.cnki.jnwafu.2014.05.006. 宋彬, 王得祥, 张义, 等. 延安15种园林树种叶片硫含量特征分析[J]. 西北农林科技大学学报(自然科学版), 2014, 42(5):91-96. doi:10.13207/j.cnki.jnwafu.2014.05.006.
    [24] XIAO H Y, WANG Y L, TANG C G, et al. Indicating atmospheric sulfur by means of S-isotope in leaves of the plane, osmanthus and camphor trees[J]. Environ Pollut, 2012, 162:80-85. doi:10.1016/j. envpol.2011.11.006.
    [25] LI L, ZENG H, GUO D L. Leaf venation functional traits and their ecological significance[J]. Chin J Plant Ecol, 2013, 37(7):691-698. doi:10.3724/SP.J.1258.2013.00072. 李乐, 曾辉, 郭大立. 叶脉网络功能性状及其生态学意义[J]. 植物生态学报, 2013, 37(7):691-698. doi:10.3724/SP.J.1258.2013.00072.
    [26] HUANG H Y, ZHANG Y B, ZHANG C X, et al. Study on the absorbing and cleaning gaseous pollutants by woody-plants[J]. Acta Ecol Sin, 1981, 1(4):335-344. 黄会一, 张有标, 张春兴, 等. 木本植物对大气气态污染物吸收净化作用的研究[J]. 生态学报, 1981, 1(4):335-344.
    [27] HONG Y, ZHANG D P, HUANG J H. Effect of SO2 on leave's sulfer content and chlorophyll fluorescence of gardens plants in Shenzhen[J]. Ecol Sci, 2006, 25(6):558-560. doi:10.3969/j.issn.1008-8873.2006.06.018. 洪渊, 张冬鹏, 黄俊华. 硫污染对9种园林植物叶片硫含量与叶绿素荧光参数的影响[J]. 生态科学, 2006, 25(6):558-560. doi:10. 3969/j.issn.1008-8873.2006.06.018.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

颉洪涛,顾沈华,刘丽月,吴小双,王宝印,虞木奎.浙北52种景观树种对大气硫、氟污染物吸收富集能力研究[J].热带亚热带植物学报,2017,25(5):456~464

复制
分享
文章指标
  • 点击次数:1744
  • 下载次数: 1233
  • HTML阅读次数: 311
  • 引用次数: 0
历史
  • 收稿日期:2017-01-17
  • 最后修改日期:2017-02-15
  • 在线发布日期: 2017-09-12
文章二维码